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CHAPTER 1 

DISCRETE ELEMENT STUDIES OF THE RELATIONSHIP 

OF FABRIC TO WAVE PROPAGATIONAL BEHAVIORS 

1.1 Summary 

Wave propagation in granular materials is numerically studied through discrete 

element simulation. Two-dimensional model material systems composed of large numbers 

of circular particles were numerically generated. The particles in these model materials were 

randomly distributed with a biasing algorithm to produce fabric anisotropy so as to create 

preferred directions within the material. Wave motion is introduced through dynamic 

loadings to appropriate boundary particles to produce horizontal and vertical plane wave 

propagation within each model material. Discrete element simulation with a nonlinear 

hysteretic interparticle contact law is used to model the dynamic behavior of the model 

granular systems, and this yields information on the wave speed and amplitude attenuation. 

Through the investigation of several model systems, relationships are established between 

wave propagational characteristics and granular microstructure or fabric. Specific fabric 

measures which were used included branch vectors, path microstructures, and void 

characteristics. Distributions of these fabric descriptors were determined, and comparisons 

and correlations were made with the discrete element wave propagation results. Conclusions 

of this study indicated that while all three fabric measures provided some degree of 

correlation with the wave motion behaviors, the void fabric descriptor produced the best 

correlation for the assemblies under investigation. 

1.2 Introduction 

Granular materials are commonly described as a collection of distinct particles which 

can displace from one another with some degree of independence and which interact basically 

through contact mechanisms. The discrete nature of such materials establishes non- 

continuous and discrete load transfer behavior which can be related to the material 

microstructure or fabric. For example, it has been well establishe (Oda et.al 1982, Shukla 

et.al 1988 and Zhu et.al 1991) that load transfer in a dry cohesionless granular medium occurs 



along a complex network of discrete paths. With regard to wave propagation, granular 

materials create a structured wave-guide network through which mechanical energy is 

transferred. Along a given wave path, the dynamic load transfer is determined by the contact 

interactions between neighboring particles. The propagational characteristics of wave speed, 

amplitude attenuation and wave form dispersion are thus related to the local fabric and the 

established wave paths. 

Interest in dynamic geomechanics problems has produced considerable research over 

the past several decades, and numerous articles have appeared dealing with wave propagation 

in sand and rock materials. More recently over the past decade or two, research on granular 

material behavior has focussed on using micromechanical modeling incorporating local 

mechanics at the paniculate level to predict the macro-constitutive response. A considerable 

amount of work (Duffy et.al 1957, Deresiewicz et.al 1958, Duffy et.al 1959, Hardin et.al 

1989, Digby 1981, Thornton et.al 1986, Petrakis et.al 1988a, 1988b, Kishino 1988, Chang 

et.al 1990 and Walton 1987) has been done in modeling granular media as arrays of idealized 

(circular or spherical) elastic particles with the goal of determining equivalent macro elastic 

constitutive constants from the local interparticle contact behavior. Another large body of 

research dealing with microstructural effects in particulate media has used the approach of 

developing fabric tensor theories. Fabric of granular materials is normally described as the 

spatial arrangement of the solid particles and associated voids. Pioneering work by Oda, 

Nemat-Nasser, and Mehrabadi (1982 and 1983), and later followed by many other studies, 

e.g. Bathurst and Rothenburg (1988), Konshi and Naruse (1988) , Satake (1992) have 

developed several types of tensorial quantities which characterize local microstructure (fabric) 

and which can be used to construct constitutive laws to predict observed behaviors. Although 

some success in linking fabric to mechanical behavior has been obtained, no unique choice of 

fabric description has been universally accepted which can adequately describe the general 

mechanical response of particulate media. 

Some research has categorized fabric into two types: orientation fabric (orientation 

of individual particles) and packing fabric (mutual relation of individual particles). 

Orientation fabric may be quantitatively defined by a vector mean direction and a vector 

magnitude to characterize orientation of non-spherical or non-circular particles. This fabric 

measure is commonly represented by an angular measure (with respect to a reference 



direction) of the long axes of individual particles. Packing fabric measures have included 

branch vectors, normal contact vectors, coordination or contact numbers, void 

characteristics, etc. Examples of these fabric measures are illustrated schematically in Figure 

1.1. Some of these fabric measures are solely kinematical in nature, determined primarily by 

the particle shape and packing geometry. Other measures such as those related to the contact 

conditions are kinetic, and are determined by the particle material and shape properties and 

also by the contact surface conditions. 

Figure 1.2 shows a high-speed photograph of the dynamic photoelastic fringe patterns 

associated with an actual wave moving (from top to bottom) through a model paniculate 

medium containing some of these fabric structures. Using such experimental techniques, it 

has been observed (Oda et.al 1982, Shukla et.al 1988 and Zhu et.al 1991) for both static and 

dynamic loading conditions that paniculate materials transmit mechanical loadings along a 

series of complex discrete paths. These discrete paths are established, in relation to the 

loading direction, by many of the microstructural variables mentioned, and therefore local 

wave propagation is determined by granular fabric through the creation of local wave guides. 

This article presents the results of a theoretical/numerical study which examines the 

relationship of granular fabric with wave propagational variables. The model granular 

materials under study were large random assemblies of circular particles created numerically 

using random media generator codes. Although these assemblies involved random assembly 

procedures, deliberate biasing was used in the generation process in order to construct 

materials with a variety of microstructures. Wave propagation through these model 

assemblies was simulated using the computational scheme of discrete element modeling. 

This study focusses primarily on the effects of packing fabric as measured by: branch vector 

distributions (which for circular particles coincide with normal contact vectors), path fabric, 

and void polygon fabric 

The modeling scheme presented here can be thought of as a meso-domain approach, 

attempting to bridge the micro-macro responses. Micromechanical modeling at the 

paniculate level is applied to a sufficiently large assembly of particles such that averages of 

particular wave propagational characteristics will be meaningful. This issue is related to the 

homogenization process 

as discussed by Bourbie, Coussy and Zinszner (1987) in which they point out that 



macroscopically meaningful results can only be found if the sample size is much larger than 

the minimum homogenization volume. 

1.3 Discrete Element Method 

Originally developed by Cundall et.al (1979), the discrete element method is a 

numerical scheme that has been successfully used to simulate the response of granular media 

by modeling the dynamic behavior of large assemblies of circular disks, spheres, and blocks 

(Thorton et.al 1988, Ting et.al 1989, Williams 1988, Walton et.al 1991, Ng et.al 1992, 

Rothenburg et.al 1993 and Sadd et.al 1993). The method makes simplifying constitutive 

assumptions for each particle (commonly assuming rigid body behavior) and then uses 

Newtonian mechanics to determine the translational and rotational motion of each particle in 

the assembly. In order to establish inter-particle contact behavior, the assumed rigid particles 

are allowed to have small overlapping contact, and thus contact forces are developed as a 

result of particular stiffness and/or damping characteristics. The technique establishes a 

discretized time stepping numerical routine, in which granule velocities and positions are 

obtained through numerical integration of the computed accelerations. Using the principle of 

causality, it follows that during an appropriately small time step, disturbances cannot 

propagate from any disk further than its immediate neighbors. Under these conditions, the 

method becomes explicit, and therefore at any time increment the resultant forces (and thus 

the accelerations) on any particle are determined solely by its interactions with its contacting 

neighbors. For applications to wave propagation, the movements of the individual disks are 

a result of the propagation through the medium of disturbances originating at particular input 

loading points. Consequently, the wave speed and amplitude attenuation (intergranular 

contact force) will be functions of the physical properties of the discrete medium, i.e. the 

microstructure or fabric. 

The genera! concept of the method may be explained by considering a general two- 

dimensional paniculate assembly as shown in Figure 1.3. Isolating attention to the i-th 

particle and applying Newton's laws yields 
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£ F'J + F' = mjxi 

(1.1) 
N 

£ M'1 + M' = 7 0, 

where F'J are the j-contact forces on the i-th particle, F ' represents any non-contacting forces 

on particle i, M'J are the moments (about the particle's mass center) resulting from contact 

forces F ,J, M' is the resultant moment from any non-contacting forces, mt is the particle 

mass, and It is the mass moment of inertia. With given contact and non-contact forces, the 

linear and angular accelerations of the i-th particle can thus be determined from this system 

of equations. With the accelerations known, the velocities and displacements may be obtained 

through numerical integration using simple finite differencing schemes. 

It is obvious that the contact response between neighboring particles plays a very 

important role in the use of this numerical method to simulate wave propagation through 

granular materials. Past research, Sadd et al. (1993) has investigated the use of several 

contact laws within the discrete element modeling scheme. Establishing a local normal and 

tangential coordinate system at each contact between adjacent particles, a contact law can be 

constructed relating interparticle force to the overlapping deformation and deformation rate. 

In general such a contact law between adjacent particles could be written as 

K = ^(ö^A.V,) 
(1.2) 

F'J = F,'J(b ,v ,6   v) 

where ön and 6, are the relative normal and tangential displacements between particles / and 

j, and vn and v, are the relative normal and tangential velocities. Contact relations (1.2) may 

also be history dependent, and a Coulomb-type friction law is commonly incorporated to 

place limits on the tangential response. Specific forms of such contact relations have included 

(Sadd et.al 1993) linear, non-linear, and non-linear hysteretic laws. Results have indicated 

that the non-linear hysteretic deformation law provided simulation results which compared 

favorably with experimental data (Sadd et.al 1993), and this particular law has been chosen 

for use in the current study. 



1.4 Branch Vector Fabric 

One popular fabric measure used for the static response granular materials has been 

the branch vector. This measure is defined as the vector drawn between the mass centers of 

contacting particles, see Figure 1.1. For the circular particles under study, dynamic loads are 

transmitted primarily through contact points which lie along branch vectors, and thus this 

fabric measure appears to be appropriate for wave propagation problems. Thus it seems 

reasonable to assume that branch vector distributions could be related to the wave 

propagational behaviors in such media. 

To investigate such relationships, several large random particulate media assemblies 

were numerically generated. All assemblies contained 25 mm diameter particles of equal size. 

Generation schemes used various algorithims (Tai 1993) to construct model assemblies with 

different microstructures as reflected in the distributions of branch vectors These distributions 

can be classified as strongly, moderately and weakly anisotropic model systems. Six such 

assemblies are shown in Figure 1.4; where assembly S-l was generated by a strongly 

anisotropic generator, assemblies M-l and M-2 were constructed by a moderately anisotropic 

generator, and a weakly anisotropic scheme was used to construct assemblies W-l, W-2 , and 

W-3. Table 1-1 lists additional parameters for each of these assemblies including the total 

numbers of particles, the void ratio (volume of void / volume of particle) and the average 

coordination number (average number of contacts per particle). Assembly S-l has the highest 

void ratio of 0.43 and lowest coordination number of 2.87, while W-3 has the lowest void 

ratio of 0.22 and the highest coordinate number of 4.30. 

Although it would be desirable to develop general relationships between fabric 

vectors/tensors and wave propagational variables, the current state of knowledge requires a 

simpler, pragmatic approach. Thus in order to investigate the relationship between branch 

vector fabric and wave propagational characteristics, all unit branch vectors were calculated 

for each assembly. Polar distributions of these branch vectors were then determined and are 

shown in Figure 1.5.  In order to quantify such distributions, a branch vector ratio 

E I* I p   -   L—' '   y' 

' - TK\ °3) 



was calculated, where bx and by are the horizontal and vertical components of the unit branch 

vectors, and the summations go over all defined branch vectors in a given model assembly. 

Values of the ratio Rb for the six assemblies are listed in Table 1 -1. For assembly S-1, all 

branch vectors are concentrated in the region approximately defined by ±30° from the 

vertical direction. No branch vector is found along the horizontal direction, and Rb is 2.06 

for this assembly. The branch vector distributions for assemblies M-l and M-2 primarily 

occur in vertical and horizontal directions with preference in vertical direction, and both 

assemblies have the same Rb ratio of 1.19. For the weakly anisotropic assemblies W-1, W-2, 

and W-3, no highly preferred branch vector directions were found, and the branch ratios for 

these cases were all close to unity. 

Each of the six constructed assemblies were subjected to dynamic loadings to create 

a wave propagation situation, and this behavior was modeled using our discrete element wave 

propagation code. The simulations involved the comparison of the propagation of plane type 

waves moving along horizontal (x-direction) and vertical (y-direction) paths in the generated 

assemblies. To generate the plane vertical wave, all particles along the bottom of the 

assembly were simultaneously loaded in the vertical direction with a transient input loading 

of triangular time history. The input pulse had a peak value of 1 kN and a period of 60 us. 

From a continuum point of view, this type of loading will input primarily a planar P or 

dilatational wave. Of course, as the combined dynamic signal moves through the granular 

medium, some small tangential interparticle contact forces will develop, and thus at the micro- 

level, there will be some partitioning of the signal into a shearing mode. We would not 

however, classify this mode as a shear wave component The generated input for the 

horizontal wave was created in a similar fashion. 

To calculate the transmitted or output wave pulse, an imaginary horizontal or vertical 

line was drawn near the boundary opposite to where the input loadings were applied. If a 

branch vector of a pair of particles in contact or potential contact is intercepted by this 

imaginary line, the normal contact load component perpendicular to the imaginary line, i.e. 

either Fx or F , was recorded. In this fashion, the contribution of the individual particle 

contacts could be determined, and these recorded loads were then summed and normalized 

with respect to the sum of the peak values of the input loadings. These normalized contact 

loads or load transimission ratios for horizontal and vertical waves are thus given by 



y F (o 
y F / J     peak input 

F F (o 
"w    E^, peöi />?/?«/ 

where the summation in the numerator is over the number of branch vectors intercepted by 

the imaginary line, while the summation in the denominator is over the number of input 

loadings. In order to compare these horizontal and vertical transmission ratios, the ratio of 

their peak values may be used, i.e. 

RF - ^—^ (1.5) 

peak 

This ratio is given in Table 1-1 for each of the six assemblies under study. 

Figure 1.6 shows the transmission results of a discrete element wave propagation 

simulation for the media model S-l, and it is quite apparent that the vertical, y-component of 

load transimission is predominant for this assembly. Although it is not discernable from the 

figure, the wave speed as determined by the arrival time of these averaged transmission 

profiles is different for the two propagational directions, with a vertical wave speed 

approximately three times that of the horizontal motion. These results correlate with the 

branch vector distribution plot shown in Figure 1 5(a), thus indicating that the branch vector 

is related to the transmission of waves in particulate materials. Similar results occur for the 

moderately anisotropic assemblies M-l and M-2; however, for these cases the fabric ratio Rb 

fails to correlate completely with the numerical model simulation results. For example, both 

the peak transmission ratios RF and the wave speeds indicate that model assembly M-2 is 

more anisotropic than assembly M-l, but unfortunately this does not correlate with their 

branch fabric ratios as given in Table 1-1. The wave transmission results for the weakly 

anisotropic assembly W-2 are shown in Figure 1.7. Table 1 indicates that the RF ratio for this 

case is much smaller than for the strongly and moderately anisotropic assemblies, and this 

correlates reasonably well with branch vector fabric. 



1.5 Path Fabric 

As mentioned previously, when waves propagate through granular media, the local 

or micro-dynamic loads are transferred through specific chains of particles linked through 

contact. Between these special chains, particles may carry little or no load. It would be 

expected that such load carrying paths which are relatively straight would act as a better 

propagator of waves than would a highly irregular path. Thus it appears that the local 

microstructure of load carrying paths within a particulate medium would also be an 

appropriate fabric measure to correlate with wave propagation. 

In order to quantify the path fabric concept, a path is defined as a set of continuous 

branch vectors of particles in contact as shown in Figure 1.8. It has been observed 

experimentally by Shukla and Damania (1987) that for dry cohesionless materials, dynamic 

load can be transferred along a path only when every pair of neighboring branch vectors b-t 

and bj in the path satisfy the relationship 

bt -bj>0 (1.6) 

which means that the branch angle defined in Figure 1.8 is less than 90°. Therefore, a 

transferable or propagator load path can be defined as a path in which the dot product of 

all pairs of neighboring branch vectors is positive. 

One method of constructing a path fabric measure, based on the straightness of the 

path, would be to sum the dot products of all adjacent unit branch vectors in a given 

propagator path. For example, a path fabric measure between two arbitrary particles could 

be expressed as 

F   -Z        ' 

^ bb 
J 

where the inner summation is over all connecting particles on a given path, while the outer 

summation is over all possible paths For the special case of a single straight chain of 

particles, there exists only one path between any two particles, and equation (1.7) gives Fp 

= I/(N-J), where N is the total number of particles in the path.   This would constitute a 



minimum value of FP among all assemblies of single particulate chains. 

Another method to construct a path fabric measure is to use x and y branch vector 

components by defining the following quantities between two arbitrary particles 

-    EE \b\ 
EEi 

(1.8) 
EEIM p y    EEi 

where outer summations are over all possible paths between the two arbitrary particles, and 

inner summations are over individual paths. For granular media simulated by circular particles 

of the same size, the values of Px and P will not be larger than the particle diameter, and will 

equal to the diameter only when the path is a straight chain along the x or y direction. 

In order to do the necessary calculations specified by equations (1.7) or (1.8), 

considerable computational effort is required for the six assemblies under study. All 

propagator paths must be determined in these assemblies between input and output particles 

for both horizontal and vertical wave propagation simulations. Such calculations for 

assemblies with 103 particles typically yield 107 - 108 total possible paths. In order to reduce 

the size of this computational problem, the model assemblies are divided into sub-regions, and 

paths outside prescribed boundaries will be discarded. 

Figure 1.9 illustrates such a scheme for the calculation of vertical propagation paths. 

A particular vertical propagator path is shown between a pair of arbitrary input and output 

particles. Equation (1.8) for this vertical path can be written as 

p = 
X 

EEi 
path          p 

X 

£w ,-, /—*      particle 
path 

p = 
y 

ELPy 
EE' 

path          p 

y 

Z—/      particle 
path 

(1.9) 

where Px and Py are the x and y components of the vector from the input particle to the output 

particle, N^ is the total number of paths between the input and output particles , and Npartide 

10 



is the total number of particles along the given path. The determination of the number of 

paths and the number of particles on a given path may be carried out through calculations in 

subregions (Tai 1993), e.g. regions I, II and III shown in Figure 1.9. It should be pointed out 

that a particular vertical path under consideration will be discarded if it extends beyond a 

vertical zone of fixed width centered at the initiating input particle within a subregion. This 

is reasonable since a highly tortuous path will transmit negligible load, and by discarding these 

paths a reduction of computational effort will result. The vertical path fabric measure for the 

whole assembly can then be obtained by summing the values given by equation (1.9) for all 

the paths between all input and output boundary particles. 

Using equation (1.9), the vertical and horizontal path fabrics of each of the six model 

assemblies have been computed. The ratios of the summations of vertical fabric to the 

summations of horizontal fabric 

K„ = ^r^ (i io) 

are given in Table 1 -1. For the strongly anisotropic assembly S-1, there is no contiguous path 

along the horizontal direction and this gives a ratio of infinity, which correlates with the 

discrete element results which show that the horizontal wave is almost blocked. The Rp ratio 

has values of 5.88 and 2.08 for the two moderately anisotropic assemblies M-l and M-2. 

Thus, there are more paths along the vertical direction rather than the horizontal direction, 

and waves prefer to propagate along the vertical direction in these assemblies as predicted by 

discrete element analysis. However, as with the branch vector case, the path fabric also fails 

to correlate with the stronger wave propagation anisotropy of assembly M-2 with respect to 

assembly M-l The reason for this lack of correlation may be due to gap closing during the 

passage of the wave motion, and such phenomena can change the path fabric. Taking 

assembly M-2 as an example, during the process of vertical wave propagation, it appeared 

from our discrete element modeling that more than 40 new contacts had been created. The 

R ratios of the weakly anisotropic assemblies W-l, VV-2, and W-3 are 0.95, 1.00, and 1.16, 

respectively, which indicates that these assemblies are indeed weakly anisotropic. These 

ratios provide a reasonable correlation between path fabric and wave behaviors for the W- 

11 



assemblies. 

1.6 Void Polygon Vector Fabric 

The previous two sections proposed fabric measures associated with the particles of 

granular systems. However, in addition to the solid particle phase, a granular material also 

consists of a void phase, and thus it would seem reasonable that a fabric measure based on 

voids could be useful to correlate with wave propagation. This concept of using voids to 

characterize fabric was first proposed by Konishi and Naruse (1988) for the static response 

of particulate materials. 

To describe a void with N curved segments, a polygon is used as shown in Figure 

1.10. The polygon consists of the branch vectors linking the particles around a void, and 

thus a void polygon is represented by this special group of branch vectors. Assuming that 

a void surrounded by Nparticles has Nbranch vectors b°\ b<2>..., and bw, a local void 

tensor can be defined as 

m L w P,,-z»m*. (no 
Ar = 1 

where bf*' are the components of b^. The principal values of this void tensor are given by 

1 
Pi-Pi ;rE^2± 

*■ k--\ \ 

N 2 

(£ *t
2cos20t) 

k--\ 

.£ 6*sin264 
*:=! 

(1.12) 

and the major principal direction is calculated as 

6   = — arctan p      2 

1 N 

<E 
*:= 1 

*.' sin20jt,/ 

k= 1 
b! cos28<./ 

(1.13) 

Now a void can be described by the set {p,, p2 dp } in the following manner: H = p, - 

p2 is related to the void anisotropy, 5 = p, p2 represents the void area, and 6p specifies the 

void orientation or direction. Konishi and Naruse (1988) proposed a fabric measure based on 

12 



a local void vector p with magnitude H and direction specified by 0p . A modification of this 

definition is used in this study, whereby the void vector p is defined as a vector whose 

magnitude is HS with direction coinciding with the major principal axis. The reason for 

including S in the void vector definition is based on the premise that void size (area) will play 

a role in the dynamic response of granular materials, and thus it should appear explicitly in 

a proposed fabric measure. It should be pointed out that for the case of isotropic voids, H 

= 0, thus implying a zero void vector. However, this would be an unlikely situation for 

granular media generated through the random procedures used in this study. 

Using this scheme of local void vectors, a polar rose diagram can be constructed 

similar to the branch vector distributions in Figure 1.4, and these plots are shown in Figure 

1.11 for the six model assemblies under study. An examination of these plots along with a 

comparison of the corresponding branch vector diagrams reveals that void vector distributions 

appear to have some advantages in correlating wave propagation with the material 

microstructure. In the void vector distribution diagram for assembly S-l, all void vectors lie 

in the vertical direction to block horizontal wave paths, while the corresponding branch vector 

diagram fails to demonstrate this. For assemblies M-l and M-2, the void vector diagrams 

show an overwhelming majority of void vectors lying in the vertical direction. This agrees 

with the numerical wave motion simulations, while the corresponding branch vector diagrams 

only show slightly more branch vectors in vertical direction than in the horizontal. The void 

vector diagrams for the W-assemblies also indicate preferred wave propagation directions, 

which was not apparent in the branch vector diagrams. 

A void vector ratio defined as all void vector components in the vertical direction over 

all components in the horizontal, i.e. 

K-^ (1.14) 

can thus be used to measure the anisotropy of a medium with respect to voids. The values 

of this ratio R^,, for the six assemblies are given in Table 1-1. This ratio generally increases 

with the degree of assembly anisotropy except for assemblies W-2 and W-3, and it has a 

maximum value for assembly S-l, thus indicating the strongly anisotropic properties of this 

model medium. For moderately anisotropic assemblies M-l and M-2, the ratio decreases and 
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successfully predicts a stronger anisotropy for assembly M-2 with respect to M-l. The values 

of Rv for the weakly anisotropic assemblies W-l, W-2 and W-3 are all close to unity. The 

void fabric ratio correctly indicates that the degrees of anisotropy in W-2 and W-3 are smaller 

than in W-l, but as with the other fabric measures it fails to identify W-2 as having the 

smallest degree of wave attenuation anisotropy among the W-assemblies. These differences 

among the W-assemblies are however, relatively small 

1.7 Conclusions 

Results of several discrete element simulations of wave propagation through model 

granular materials have been presented. The model materials included six numerically 

generated assemblies of circular particles with prescribed initial fabric anisotropy varying from 

strongly to weakly anisotropic. Plane type wave propagations were simulated in horizontal 

and vertical directions through each assembly by applying dynamic loadings to appropriate 

boundary particles. Wave propagation behavior such as wave speed and amplitude 

attenuation were determined from the discrete element model using specific nonlinear 

hysteretic interparticle contact laws developed in previous research. 

In order to establish relationships between these simulated propagational 

characteristics and granular microstructure, specific fabric measures were employed. Based 

on observed experimental information and on previous studies, three particular fabric 

descriptors were chosen including branch vectors, path microstructures, and void 

characteristics. The spatial distributions of these fabric measures were determined for each 

of the six model assemblies under study. These distributions were then averaged over each 

assembly with respect to horizontal and vertical directions, and comparisons were made with 

the discrete element wave propagational results. It should be noted that the wave 

propagation-fabric relationships are thus limited to the simulations in the horizontal and 

vertical coordinate system. Planar wave propagation in other directions would be difficult to 

simulate is these assembly models. 

Findings of the study indicated that each of the three fabric descriptors provided a 

reasonable degree of correlation with the wave motion results, and that the void vector fabric 

measure appeared to provide the best correlation for the six model materials. However, even 

though each model material system was randomly generated and contained hundreds of 
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particles, it is not possible to argue the point in general, that void fabric will be a better 

microstructural measure than branch vector or load/propagator path fabric schemes. Clearly 

additional research is needed to further narrow the wide choices of appropriate fabric 

measures to predict the dynamic response of granular materials. 

It should be pointed out that in addition to microstructure or fabric, wave propagation 

in particulate media is also frequency or wavelength dependent. This type of medium acts as 

a nonlinear wave guide, and local microstructure and contact nonlinearity will produce 

dispersive, frequency dependent propagational behaviors. This aspect has been investigated 

by us (Shukla, et.al 1993) in some detail for one-dimensional material models. One particular 

aspect which was observed both experimentally and numerically was that signals of 

sufficiently long wavelength can excite resonant sub-units of the medium. For this behavior, 

a smooth input signal will undergo seperation into a series of short oscillatory waveforms, and 

this repartitioning of energy effects the local attenuation response. The 60 us input pulse 

used in this study was sufficiently short enough so as not to produce this effect. Although it 

appears from the output signals shown in Figures 1.6 and 1.7 that wave form spreading has 

occurred, in reality this results from the fact that averaged output wave signals are being 

plotted. The averaging process sums individual contributions from several contacts along the 

output side of the assembly model, and because of small time shifts of each of the various 

signals, the time signature of the summed signal is broader (200-500 us) than the individual 

signals (60 us). The current study did not investigate frequency effects nor vary the input 

loading duration. 

A longer term goal of this type of research would be to construct general relationships 

to connect wave propagation variables with averaged micro-fabric. For example, if we define 

volume-averaged, second order fabric tensors based on branch vectors F,'1', path vectors F,(pl, 

and void vectors F^\ then it would be desirable to develop a general wave transmission law 

of the form 

TR=f{^\F?\Fp) (1.15) 

where TR would represent the amplitude transmission ratio of output to input. This effort is 

currently underway. Clearly experimental determination of paniculate media microstructural 
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fabric is needed to be able to use such theoretical relationships. Such efforts to determine 

micro structure or fabric of actual granular materials have been conducted, see for example 

Gill (1993) or Hryciw and Raschke (1995). 
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Assembly No. of Particles Void Ratio Coor. No RF Rb K K 
S-l 822 0.43 2.87 200.7 2.06 no path,; 85.18 

M-l 778 0.28 3.43 33.3 1.19 5.88 2.44 

M-2 854 0.28 3.41 100.0 1.19 208 2.58 

W- 1 1042 0.25 4.17 1.7 1.01 0.95 1.12 

W-2 1296 0.25 4.04 0.9 0.99 1.00 1.05 

W-3 1338 0.22 4.30 1.2 1.01 1.16 1.00 

Table 1. Summary of Various Fabric Measures and Wave Transmissions 

for Six Model Assemblies 
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Figure 1.1  Typical Microstructure or Fabric in Granular Materials 
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input loading 

Figure 1.2. Dynamic Photoelastic Photograph of Wave Propagation in 
a Model Granular Medium 
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Figure 13   Discrete Element Modeling 
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Strongly Anisotropie Assembly S-l Moderately Anisotropie Assembly M-l 
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Weakly Anisotropie Assembly W-2 Weakly Anisotropie Assembly W-3 

Figure 1.4. Six Model Granular Material Systems 
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Figure 1.5 Branch Vector Distribution Plots of Model Assemblies 
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Figure 1.6. Wave Transmission Results for Assembly S-l 
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Figure 1.8. Schematic of Path Fabric Concept 
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Figure 1.9. Vertical Propagator Path 
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Figure 1.10. Void Fabric Schematic 
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Figure 1.11. Void Vector Distribution Plots of Model Assemblies 
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CHAPTER 2 

THE EFFECT OF MICROSTRUCTURAL FABRIC ON DYNAMIC 

LOAD TRANSFER IN TWO DIMENSIONAL ASSEMBLIES OF 

ELLIPTICAL PARTICLES 

2.1 Summary 

Experimental and numerical studies have been conducted to investigate the effect of 

microstructural fabric, such as major axis orientation, contact normal and branch vector 

distributions, on dynamic load transfer behavior in two dimensional granular material. The 

granular medium was simulated by assemblies of elliptical particles. The experimental method 

utilizes the combination of high speed photography and photoelasticity to study the local load 

transfer behavior in granular assemblies subjected to explosive loading. Numerical studies 

employed a computational scheme based on the discrete element method. Results indicate that 

the microstructural fabric has significant effect on the load transfer phenomenon, such as 

stress wave velocity, load pulse wavelength and contact load attenuation. 

2.2 Introduction 

A granular medium may be defined as a complex collection of discrete particles of 

varying shape, size, and orientation. Understanding the dynamic behavior of granular 

materials has important scientific and practical applications. A large number of geomechanics 

problems dealing with seismic and blast loading of sands and rock require such knowledge. 

Additional applications can be found in the processing of powders related to metallurgy and 

pharmaceutical operations. 

The mechanical behavior of granular materials depends strongly on their 

microstructure or fabric which is generally defined as the spatial arrangement of solid particles 

and associated voids. Such microstructure can be further classified as: orientation fabric 

(orientation of individual particles) and packing fabric (mutual relation of individual particles 

to each other) Orientation fabric may be quantitatively defined by a vector mean direction 

and a vector magnitude to characterize orientation of non-spherical or non-circular particles. 

This fabric is usually represented by the angle between the long axes of particles and a 
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reference direction. Many packing fabric measures have been proposed for granular media. 

Some examples of fabric measures include branch vectors between the mass centers of 

adjacent grains, normal vectors in the direction normal to particle contact, coordinate or 

contact number, void characteristics etc. Examples of some fabric measures are illustrated 

schematically in Figure 2.1. No unique set of fabric measures has been universally accepted 

which can adequately describe the mechanical response of such media. 

The important role of the fabric in the mechanical properties of granular materials has 

been recognized in recent years. Oda (1978) observed thin sections of material under a 

microscope to investigate the significance of fabric in granular mechanics. Nemat-Nasser 

(1982) also observed the influence of fabric on the overall shear-induced rate of volume 

expansion and volume contraction. Konishi (1978) studied the effects of fabric on the 

mechanical behavior of granular materials using two-dimensional photoelastic models. Most 

of these studies have assumed that the individual particles were circular. Assemblies of such 

simple shapes can only produce restricted types of material fabric. For example, such cases 

lead to contact normal vectors which are always directionally coincident with the branch 

vectors. Also since circular disks are symmetrical about their centers, it is not possible to use 

orientation fabric to describe a granular assembly of circular disks. 

However, particles in actual granular materials are rarely circular. Oda et al (1982) 

and Subhash et al (1991) investigated the relation between the fabric and mechanical behavior 

of granular materials experimentally using assemblies of elliptical particles to simulate the 

granular media. Ting (1991, 1992) and Rothenburg and Bathurst (1992) also used assemblies 

of elliptical particles to numerically study the response of granular materials. Unlike 

assemblies of circular particles, for any two contacting elliptical particles in a two dimensional 

assembly, the branch vector will not necessarily coincide with the contact normal vector (see 

Figure 2.2) and also orientation fabric will be needed to describe such a granular assembly. 

The research works mentioned above were restricted to static loading. Investigation 

of the dynamic response of granular materials started several years ago. Rossmanith et al 

(1982), Shukla et al (1987, 1988), and Zhu et al (1991) simulated granular materials using 

circular disks to study dynamic wave propagation phenomenon. Shukla et al. (1987) found 

that the particle to particle load-transfer process is controlled by the angle made by contact 

normals. Load transfer only occurs when this angle is obtuse. Recently our group ( Shukla 
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et al. 1993) has initiated the study of dynamic response of elliptical-shaped participate media. 

This research has focused on the particle aspect ratio and has studied the effect of particle 

shape on the inter-granular load transfer, contact load attenuation, stress wave velocity and 

the load pulse wavelength. However, this research work dealt primarily with load transfer 

behavior in single chain assemblies where only orientation fabric measures and aspect ratio 

apply. 

Based on this initial dynamic work, the present study focuses on the relationship 

between the microstructural fabric and load transfer behavior in two dimensional assemblies 

of elliptical particles. The major axis orientation was chosen as the measure of orientation 

fabric. Since normal contact and branch vectors are no longer coincident, both are needed as 

measures of packing fabric. So to describe the fabric of a two dimensional assembly of 

elliptical particles at least three parameters (branch, normal and orientation vectors) will be 

needed. A series of experiments has been conducted to investigate the effect of these three 

fabric parameters on the wave propagation behavior in regular assemblies of elliptical shaped 

particles. In addition, numerical modeling of the dynamic response of these assemblies was 

also conducted using the discrete element method. This computational scheme has been very 

useful in simulating the response of discontinuous and particulate materials (see for example 

Sadd et al., 1991 and 1993, and Shukla et al., 1993). 

2.3 Experimental Procedure 

The experimental method used for this study employed dynamic photoelasticity which 

in conjunction with high-speed photography provided whole field data as a stress wave 

propagated through the various assemblies. The elliptical particles (all of 38mm x 25mm) 

were made from Homalite-100, a photoelastic material, and these particles were arranged into 

various regular model geometries. 

The experimental models were placed in the optical bench of a high speed Cranz- 

Schardin type camera. The particles were loaded by exploding a small amount of Lead Azide 

in a specially designed charge holder located at the top of the assembly. The camera was 

triggered at some prescribed delay time after igniting the explosive. The high speed 

photography system operated as a series of high intensity, extremely short duration pulses of 

light and provided twenty photoelastic images at discrete times during the dynamic event. A 
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sampling of 3 photoelastic images obtained from the high speed camera is shown in Figure 

2.3(a). These images of the propagation phenomenon were enlarged and digitized to facilitate 

analysis. The Hertz stress field equations along with the stress optic law were used to 

calculate the contact load at a particular contact point and time by applying the multi-point, 

non-linear least square method developed by Shukla and Nigam(1986). The wavelength of 

the stress wave pulse can be measured directly from the photographs of the wave propagation 

process. In all experiments, the wavelengths were observed to be approximately three to four 

times the particle size. Past studies (Shukla, et al., 1993) have found that resulting wave 

motion depends on the particle size relative to the wavelength of the loading pulse. The 

propagation distance is plotted as a function of time to obtain the wave velocity. 

Experiments started with the body centered cubic (BCC) assemblies (see Figure 2.3, 

2.4, 2.5). The names BCCH (Figure 2.3) and BCCV (Figure 2.4) represent arrangements with 

the major axis of the ellipses parallel to the//orizontal and Vertical directions, respectively. 

BCCR, as shown in Figure 2.5, is an assembly obtained by Rotating the BCC assembly. In 

these BCC assemblies, contact normal and branch vectors are directionally coincident. These 

particular assemblies have the symmetry feature that one can change the major axis 

orientation 90 degrees without changing the contact normal and branch vector directions. 

This feature allows us to investigate the effect of major axis orientation on wave propagation 

behavior. This effect was also studied using hexagonal close-packed (HCP) assemblies. One 

example assembly shown in Figure 2.6(a) was named HCPH, for the case with major axes 

oriented in the horizontal, with a similar notation HCPV for the vertical orientation case. To 

investigate the effect of contact normal and branch vector orientation, modified HCP 

assemblies were used One example shown in Figure 2.6 (b) was named HCPS1. In these 

assemblies, by changing the space between the particles, the major axis orientation was kept 

horizontal while the contact normal and branch vector directions were varied 

2.4 Numerical Simulation 

The discrete element method was used to model the dynamic load transfer in the 

simulated granular materials. This method, originally proposed by Cundall and Strack (1979) 

for the static case, has been applied to dynamic load transfer processes in granular materials 

by various authors (Sadd et al 1989, Walton et al 1991, and Trent et al  1989) The numerical 
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strategy uses Newtonian rigid-body dynamics to calculate the translational and rotational 

motion of each particle in these model assemblies. For wave propagation applications, these 

movements of the individual particles are a result of the propagation through the medium of 

disturbances originating at particular input loading points. In this fashion, the dynamic 

response of the model system can be determined, and parameters such as wave speed and 

amplitude attenuation can be calculated for specific models. Furthermore, these wave 

propagational characteristics can be related to the model material's microstructure which for 

this case could be correlated with size and orientation of the elliptical particles. 

For particles of non-circular shape, the determination of the various particle contact 

geometries becomes a significant computational task. Following the procedures originally 

proposed by Ting, (1993), algorithms have been established to determine particle contact 

detection, and to calculate normal and tangential contact deformation (overlap). With respect 

to determining the inter-particle contact behavior, considerable research has been done 

starting with the fundamental work of Duffy and Mindlin, (1957) and continuing with Walton, 

(1978) and Johnson, (1985). Because of the added complexity of the boundary shape, the 

contact law between elliptical particles is dependent upon the location of the contact along 

the ellipse's boundary. This effect occurs due to differences of the radii of curvature at the 

contact point. A general non-linear hysteretic contact law that was originally developed for 

circular particles (Sadd, et al. 1993) has been incorporated into this elliptical paniculate code. 

This particular non-linear contact law prescribes different loading and unloading behavior with 

a hysteresis (energy loss) proportional to the amount of contact deformation between the 

particles Different values of the contact law parameters have been used to account for the 

contact response differences due to contact location. 

2.5 Experimental Results and Discussion 

To investigate the effects of microstructural fabric on the dynamic load transfer 

process, a series of experiments was conducted on assemblies with the geometries of BCC 

and HCP with different major axes orientations and various spacings. The results are 

discussed separately, as the effect of major axis, contact normal, and branch vector 

orientations. The distributions of these fabric parameters for the entire assembly as a function 

of the angular direction were plotted as rose diagrams, see for example Figure 2.3(b). The 
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direction of the input load becomes the reference direction for the measurements of these 

fabric parameters. 

2.5.1 The Effect of Major Axis Orientation 

BCC assemblies were used to investigate the effect of the major axis orientation, as 

shown in Figures 2.3 and 2.4. A difference in the load transfer process in these two assemblies 

only results from the major axis orientation variation. The stress wave propagation 

phenomenon in two different BCC assemblies are shown in Figures 2.3 (a) and 2.4 (a). It can 

be seen that the energy was channeled along a single chain of disks in each assembly. No 

energy was transferred to other chains. Previous research work using assemblies of circular 

disks by Shukla et al (1987) has shown that the load-transfer path was related to the angle 

made by contact normals and load transfer only occurs when this angle was obtuse The load 

transfer phenomenon observed in assemblies of elliptical particles also shows that load 

transfer only occurs when 

{9,rß„}>f (2 1) 

where 6^ and ßy are the angles made by contact normals and branch vectors respectively. 

A simple experiment was conducted to verify this load-transfer rule for elliptical 

particles. The loading direction remained vertical but the BCC assembly was rotated through 

an angle of approximately 40°, as shown in Figure 2.5. If the proposed rule of load-transfer 

path is true for assemblies of elliptical particles, the energy should only transfer along the two 

mutually perpendicular chains which emanate from the particle on which the explosive loading 

takes place. The experimental results are shown in Figure 2.5. The wave propagated as 

expected with no energy transfer into particles where the angle between the contact normals 

(or branch vectors) is acute. A small amount of energy which goes into the side chain is 

because of the inaccuracy of the spatial arrangement of particles 

Data for the average wave velocities in these assemblies are shown in Figure 2.7, and 

the computed values were 960 m/s for BCCH and 1160 m/s for BCCV. This difference in 

wave speed may be qualitatively explained using an approximate equation (Takahashi, 1949) 
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for wave velocity in one dimensional granular media given by 

K 
V*d. (2 2) 

m 

where d\% a distance measure usually taken to be between the centers of two particles in 

contact, K is the effective contact stiffness, and m is the mass of the particle. For our case, the 

particle mass is the same for both BCC assemblies. However, by changing major axis 

orientation the radius of curvature at the contact has been changed For assembly BCCH, the 

radius of curvature at the contact is large, so the contact stiffness is large and one would 

expect a higher velocity. On the other hand, the distance between the centers of two particles, 

d, is larger in BCCV than that in BCCH. Evidently it is this particle distance effect that 

produces the reduced wave velocity in assembly BCCH when compared with that in BCCV 

The wave velocity in the two mutually perpendicular chains of the BCCR assembly 

were computed from the distance versus time plots. It was found that the velocity in major 

axis direction is 1080 m/s while the velocity in minor axis direction is 890 m/s. Again the 

velocity is influenced by the direction of the major axis. However, these numbers are about 

10% lower than that in the BCCH and BCCV assemblies, possibly because of the different 

intensity of initial loadings in the two chains. 

Figures 2.3 and 2.4 show the wavelengths in these two BCC assembles. In BCCH, the 

loading direction is perpendicular to the major axis of ellipses and the wavelength in this 

assembly is about four particles (94.4mm) along the propagation direction. In BCCV, the 

loading direction is parallel to the major axis of the ellipses and the wavelength in this 

assembly is about three particles (119 5mm) along the propagation direction. Variation of 

major axis orientation brings about two major fabric changes in these two assemblies, radius 

of curvature at contact, i.e. contact stiffness, and the distance between the center of particles. 

Research work by Shukla et al (1993) has shown that radius of curvature at contact has no 

appreciable effect on wavelength. This fact would lead one to believe that the difference in 

wavelength for assemblies HCPH and HCPV is caused by the distance between the centers 

of particles. Granular assemblies behave like frequency filters. The behavior of these filters 

may be determined by the distance between the centers of particles which results in the 
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different dispersion behavior. 

Using the method mentioned in section 2 data collected from isochromatic fringes 

were used to calculate contact loads. A typical plot of the contact load variation with respect 

to time for BCCH assembly is shown in Figure 2.8. As the loading pulse reaches the contact 

points, the load builds up. The contact load monotonically increases to a peak value and then 

decays to zero as the pulse passes by. The contact load profiles show very little change in 

shape except that the peak load attenuates with the propagated distance. This attenuation is 

plotted for both BCCH and BCCV assemblies in Figure 2.9. From this figure one can see that 

load attenuation in BCCH is more severe than that in BCCV. The reason for this, similar to 

the velocity drop, is that the distance between the centers of particles is different in these two 

assemblies. At the contact point some energy will be reflected and lost from the main stress 

wave pulse which passes through the contact. Energy reflection occurs at free surfaces and 

the larger radius of curvature at the contacts in the BCCH assembly provide more free 

surfaces nearly normal to the direction of wave propagation. 

The effects of major axis orientation can also be observed from experiments using 

HCP assemblies (see Figure 2.10 (a) and (b)). Typical photoelastic fringes for these 

experiments at a common time are shown in Figure 2.10 As can be seen in these 

photographs, stress wave propagation occurred in all particles below the input loading. In 

these assemblies the contact normals and branch vectors are no longer coincident (see Figure 

2.11). However, both fabric parameters satisfy the load transfer condition, {dX), P(j} > TT/2 

From Figure 2 10 one can see that the global wave fronts in the two HCP assemblies 

have different shapes. The wave front shape depends not only upon where the wave is 

allowed to go, which is determined by the load transfer condition, but also upon the wave 

velocity. From the previous discussion, we know that the load transfer condition depends 

upon the contact normal and branch vectors while the stress wave velocity is dependent on 

the major axis orientation. Figure 2.11 shows that the contact normal and branch vector 

distributions are slightly different in the two assemblies; however, the major axis orientation 

is considerably different. Careful observation of the stress wave propagation phenomenon in 

these two assemblies shows that the stress wave always propagates further along the direction 

of major axis of particles. This observation is consistent with the results of the BCC 

assemblies, which indicated that the stress wave velocity is greater along the major axis 
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direction. Thus changes in the global wave front in HCP assemblies would be mostly 

attributable to the major axis orientation variation. 

2.5.2 The Effect of Contact Normal and Branch Vector Orientation 

Having investigated the effects of the major axis orientation on the dynamic load 

transfer process, additional assemblies were studied in which the major axes were fixed in the 

horizontal orientation. By fixing the major axis orientation, the effects of contact normal and 

branch vectors could be explored independently. The contact normal and branch vectors are 

intimately related through the particles size, shape and relative location. Changing one of the 

parameters invariably changes the other. The load transfer rule can be investigated by cleverly 

choosing appropriate fabric for particular assemblies under study. 

Starting with an HCP assembly, with the major axes orientated horizontally, the 

horizontal spacing between mass centers can be set in such a way that the angle made by the 

branch vectors is less than 90 degrees and the angle made by the contact normals is greater 

than 90 degrees for certain particle pairs. Alternatively, the spacing can be chosen in such a 

way that both the branch vector and the contact normal angle is less than 90 degrees for 

certain particle pairs These two assemblies are shown in Figure 2.12(a) and 2.13(a), 

respectively. These two assemblies do not allow particle arrangement such that the angles 

between the contact normals are acute while the angles between the branch vectors are 

obtuse. To create such an assembly where the contact normals will be acute and the branch 

vectors obtuse, the major axis orientation had to be changed. By rotating the assembly 

illustrated in Figure 2.12(a) 90 degrees with respect to the input loading direction, an 

assembly is created in which the angle made by the contact normals, 0,j , was approximately 

70 degrees and the angle made by the branch vectors, P(j, was approximately 120 degrees 

(see Figure 2 14) By utilizing these three assemblies and the knowledge gained from the BCC 

assemblies (recall that 6(j = ß(j = 90 degrees was a critical angle for load transfer), the effects 

of branch vector and contact normal on load transfer path can be obtained. 

Figure 2.12 shows typical isochromatic fringes obtained from a modified HCP 

assembly, namely HCPS1, where the contact normal angle was greater than 90 degrees and 

the branch vector was less than 90 degrees. Based on the load transfer rule presented earlier, 

if the angles made by both parameters are not in excess of 90 degrees, load transfer should 
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not occur between say the (i) and (j) particle pairs. However, it is observed that load transfer 

does occur between these particle pairs. 

Figure 2.13 shows typical isochromatic fringes obtained from another modified HCP 

assembly, namely HCPS2. In this case both the contact normals and the branch vectors make 

an angle that is less than 90 degrees. In this case no load transfer occurs between the (i) and 

(j) particles. 

Figure 2.14 shows typical isochromatic fringes obtained from the assembly created 

by rotating HCPS1 assembly 90 degrees with respect to the input loading direction. In this 

assembly, the angle between the contact normals is acute and the angle between the branch 

vectors is obtuse for certain particle pairs. In this case load transfer also occurs between the 

typical (i) and (j) particle pairs. 

In light of these observation coupled with the BCC experiments, the load transfer rule 

in a two dimensional elliptical-shaped assembly can be obtained. The photographic data of 

Figures 2.12, 2.13 and 14 have shown that if the angle made by either the contact normals or 

the branch vectors is obtuse, load transfer will occur and if the angles made by both the 

contact normals and the branch vectors are acute, no load transfer will occur. The load 

transfer rule can now be modified from equation (2.1) to reflect this information 

6„ or ß„ > f (2.3) 

where again 6^ is the angle made by contact normals and §  is the angle made by branch 

vectors 

The contact normal and the branch vector not only control the load transfer path but 

also affect the stress wave velocity. To evaluate these effects one can examine the global 

wave front in assemblies HCPH(Figure 2.10), HCPSl(Figure 2.12) and HCPS2(Figure 2.13). 

The global wave front in these assemblies are obviously different from each other, and the 

front is determined by the load-transfer path and the stress wave velocity. The stress wave 

velocity depends on radius of curvature at the contact and the distance between the particles. 

In the regular assemblies used in this study the major axis orientations are fixed. So the 

contact normal uniquely defines the radius of curvature at the contact while branch vector 
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uniquely determines the distance between the particles. Recall the discussion for BCC 

assemblies that both parameters will affect loading velocity. However, the distance between 

the particles plays a predominant role in stress wave velocity. So it is reasonable to assume 

that the distribution of branch vectors has a more intimate relationship with the shape of the 

global wave front. The decomposition of the magnitude of branch vectors in the rose diagram 

for these three assemblies into x and y components, is shown in Figure 2.15. The contours 

made by x and y components qualitatively coincide with the global wave front obtained from 

experiments. 

It should be pointed out that the global wave front shapes shown in these photographs 

are in the near field. Since the loading velocity is different along the various direction, the 

global wave front shape could change at later times. 

2.6 Numerical Results 

Several discrete element simulations were conducted using the two HCP assemblies 

shown in Figure 2.10. In this computational code, there are three primary model parameters 

which need to be selected depending upon the assembly type and/or loading condition. The 

parameters are the peak value of the input load, P, the duration of input loading, AT, and the 

stiffness coefficient, a, used in the nonlinear hysteretic contact model (see Sadd et al, 1993). 

The dynamic input load was simulated by a triangular time-dependent impulse determined by 

this peak value P and the duration AT. The parameter a is related to material properties and 

the geometry of the contact region. These three parameters effect the wave velocity, 

wavelength and the load attenuation. They should be rationally selected according to the real 

experimental conditions and contact features of the granular assemblies. Since the assemblies 

used in these simulations are regular, it can be seen that there are only two varieties of 

contacts based on contact radii of curvature (see Figure 2.10). According to these contact 

locations two different stiffness coefficients were selected to model these contacts. The 

parameters used in the simulations of the experiments are given in Table 2.1. The aL] 's were 

used to model the contacts along the 'main chain' and 'secondary chain' while aL2's were used 

to model the contacts in the horizontal direction (see Figure 2.6 for description of different 

chains ). 

Using this numerical scheme, the total time period of interest is discretized into a 
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series of small intervals. These time steps are chosen to be small enough (2us for this case) 

so that in a single step the wave cannot propagate more than one particle length. In other 

words, the wave can at most only propagate from one particle to any or all of its immediate 

neighbors in a single step. This eliminates inertial coupling with other particles in the 

assembly, and produces an explicit numerical procedure. 

For HCP assemblies under study the disks are in their closest packing arrangement 

with six contacts per disk. The wave motion occurs in several different paths determined by 

the assembly micro-structure and the input load location and direction. Figures 2.16-2.19 

show the DEM contact load histories for the 'main' and 'secondary' chains in the two HCP 

assemblies. The plots show that the arrival time predicted by the numerical model match 

experimental data very well, i.e. wave speeds are closely matched. Most peak contact loads 

predicted by DEM simulations match experimental data within 10%, although some 

comparisons did produced differences as high as 20%. It is felt that since the experimental 

data itself contains scatter of approximately 10%, the computational scheme does provide 

reasonable predictions to the stress wave propagation process. 

2.7 Conclusion 

The experimental and numerical studies were conducted to investigate the effect of 

specific fabric, such as the major axis orientation, contact normal and branch vectors, on 

stress wave propagation behavior in two dimensional regular assemblies of elliptical particles. 

The results indicate the following: 

1) Characteristic wave propagation parameters, such as wave velocity, wavelength and 

load attenuation, are dependent on the major axis orientation. Higher stress wave 

velocity and lower contact load attenuation were observed along the direction of 

major axis Also the wavelength changes as the major axis orientation changes 90 

degrees in BCC assemblies. This difference in wavelength is mainly due to the change 

in the distance between adjacent particles' centers 

2) Both contact normals and branch vectors control the load transfer path. If the angles 

made by the contact normals and the branch vector are less than 90 degrees, load- 

transfer will not occur. However, if the angle made by either the contact normal or the 

branch vector is greater than 90 degrees, wave motion will propagate through the 
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contact. 

3) A branch vector uniquely determines the distance between a particle pair along the 

direction of this branch vector. This distance significantly affects the wave velocity, 

and since wave velocity is one of the major factors in the determination of global 

wave front shape, the branch vector plays an important role in the determination of 

the wave front. 

4) Comparisons of the experimental and numerical results indicated that the discrete 

element numerical technique provides good correlation with observed experimental 

data. Based on these successful correlations the numerical code will be used to predict 

load transfer behavior in large, random assemblies which would not be practical to 

handle experimentally. 

Based on the observations from the study it appears that the load transfer process in 

assemblies of elliptical particles can be represented as 

P0 
—  =f(n, b, m) (2 4) 

where P; is the peak input load to the particle, P0 is the peak output load at any contact point 

on the particle,^ is the contact normal vector, b is the branch vector and m is the major axis 

orientation vector. The determination of this load transfer relation is currently being 

investigated using the numerical scheme presented here. 
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Table 2.1 Numerical modeling parameters for HCP assemblies of elliptical disks 

Assembly Peak input load 

P(N) 

Duration of input 

loading AT (us) 

Stiffness coeff 

auOOScN/m1-4) 

Stiffness coeff 

aL2(108xN/m14) 

HCPH 3300 120 2.4 2.0 

HCPV 3100 100 2.0 2.3 
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Figure 2.3. Typical isochromatic fringes obtained from a two dimensional body centered 

cubic assembly of elliptical particles (BCCH) 

• Explosive 

contact normals 

branch vectors 

major axis orientation 

( a ) Isochromatics   Frame 18    225us ( b ) Fabric parameter distribution 

Figure 2.4. Isochromatics and fabric parameter distribution in BCCV assembly 
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Figure 2.5. Isochromatics and fabric parameter distribution in BCCR assembly 
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Figure 2.6. Some assemblies used in this study 
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Figure 2.12. Isochromatics and fabric parameter distribution in HCPS1 assembly 
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Figure 2 13. Isochromatics and fabric parameter distribution in HCPS2 assembly 
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Figure 2.14. Isochromatics and fabric parameter distribution in HCPS3 (rotated HCPS1) 
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CHAPTER 3 

WAVE PROPAGATIONAL BEHAVIORS THROUGH ASSEMBLIES 

OF ELLIPTICAL PARTICLES 

3.1 Summary 

Wave propagation in granular materials is numerically studied using discrete element 

simulation. Primary interest is concerned with linking material microstructure with wave 

propagational behaviors for materials composed of elliptical particles The discrete element 

scheme uses a non-linear hysteretic contact law which accounts for differences related to the 

radius of curvature at the interparticle point of contact. Modeling results yield information on 

wave speed and amplitude attenuation on two-dimensional, meso-domain model systems of 

both regular and random assemblies. Particulate models were numerically generated using a 

biasing scheme whereby partial control of particular fabric measures could be achieved. Three 

specific fabric measures which were used to characterize the granular material models include 

branch, contact normal and orientation vectors. DEM wave simulation results indicated that 

attenuation and wave speed generally correlated with the orientation and contact normal 

vector distributions. A power law relation between averaged fabric variables and wave speed 

and attenuation was proposed. 

3.2 Introduction 

The mechanical response of granular and particulate materials is governed by the 

interparticle contact behavior between individual grains. The discrete nature of such materials 

establishes non-continuous and discrete load transfer behavior which can be related to the 

material microstructure or fabric. It has been well established [Oda et al 1982, Shukla et al 

1988 and Zhu et.al 1991] that load transfer in a cohesionless granular medium occurs along 

a complex network of discrete paths. With regard to wave propagation, granular materials 

create a structured wave-guide network through which mechanical energy is transferred. 

Along a given wave path, the dynamic load transfer is determined by the contact interactions 

between neighboring particles, and thus propagational characteristics of wave speed, 

amplitude attenuation and wave form dispersion are related to the local fabric along 

54 



established wave paths. 

Considerable interest in dynamic geomechanics problems has produced numerous 

studies dealing with wave propagation in sand and rock materials. Much of the current 

research has focussed on using micromechanical modeling incorporating local mechanics at 

the particulate level to predict the macro-constitutive response. Some work (Duffy, 1959, 

Hardin, 1989, Digby, 1981, Thornton, 1986, Petrakis, et.al, 1988, Kishino, 1988, Chang, 

et.al, 1990, and Walton, 1987) has been done in modeling granular media as arrays of 

idealized (circular or spherical) elastic particles with the goal of determining equivalent macro 

elastic constitutive constants from the local interparticle contact behavior Another area of 

research has developed fabric tensor theories whereby particular microstructures are 

described by volume averages of vector/tensor measures and constitutive relations are 

proposed using these fabric tensors. Pioneering work by Oda (1982), Nemat-Nasser, and 

Mehrabadi (1983), and later followed by many other studies, e.g. Bathurst and Rothenburg 

(1988), Konshi and Naruse (1988), Satake (1992) have developed several types of fabric 

tensor theories to predict static or quasi-static particulate material behaviors. 

Although some success in linking fabric to mechanical behavior has been obtained, no 

unique choice of fabric description has been universally accepted which can adequately 

describe the general mechanical response of particulate media. Fabric can be categorized into 

two types: orientation fabric (orientation of individual particles) and packing fabric (mutual 

relation of individual particles). Orientation fabric may be quantitatively defined by a vector 

mean direction and a vector magnitude (e.g. orientation vector) to characterize orientation 

of non-spherical or non-circular particles This fabric measure is commonly represented by 

an angular measure (with respect to a reference direction) of the long axes of individual 

particles. Packing fabric measures have included branch vectors (drawn between adjacent 

particle mass centers), normal contact vectors, coordination or contact numbers, void 

characteristics, etc. Examples of these fabric measures are illustrated schematically in Figure 

3.1. 

By considering material models with elliptical shaped particles, various orientation 

and packing fabric interactions will occur which would not be present for circular or spherical 

particles. Obviously particles found in natural granular materials have complex non-circular 

shapes, and thus a better understanding of the behavior of such materials may be found by 
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considering particles of more general shape. Several previous studies have investigated the 

static behavior of granular systems with elliptical particles. Konishi, et.al. (1982) conducted 

one of the first experimental studies on the relationship between fabric and mechanical 

behavior of granular systems with elliptical/oval particles. Discrete element simulations have 

been conducted by Rothenburg and Bathurst (1992,1993), Ting, et.al. (1993,1995), Sawada 

and Pradham (1994) and Lin and Ng (1994) on elliptical and ellipsoidal particles. Additional 

theoretical work related to grain shape has been conducted by Pande (1987). Results of these 

previous studies have been primarily concerned with the static behavior including shear 

strength, friction angle and anisotropy. 

The present article is concerned with the role particle shape plays in the dynamic 

response of granular media. An initial paper focusing on an experimental investigation of this 

topic has been previously published by our research group (Zhu et.al 1996). Results are herein 

presented of a theoretical/numerical study which examines the relationship of granular fabric 

with wave propagational variables. The model granular materials under study were large 

assemblies of elliptical particles created numerically using random media generator codes. 

Although these assembly generating procedures were random, deliberate biasing was used in 

the generation process in order to construct materials with a variety of microstructures 

Because many natural granular materials are deposited with preferred directions of the particle 

long axis, our goal was to focus on this type of inherent anisotropy by creating model 

assemblies with this type of fabric Wave propagation through these model assemblies was 

simulated using the computational scheme of discrete element modeling. This study 

concentrated primarily on the relationship between material fabric (as measured by the 

distributions of branch, normal and orientation vectors) and the propagational characteristics 

of wave speed and attenuation. 

The modeling scheme presented here can be thought of as a meso-domain approach, 

attempting to bridge the micro-macro responses Micromechanical modeling at the paniculate 

level is applied to a sufficiently large assembly of particles such that averages of particular 

wave propagational characteristics will be meaningful This issue is related to the 

homogenization process, see for example, (Bourbie, Coussy and Zinszner 1987) in which they 

point out that macroscopically meaningful results can only be found if the sample size is much 

larger than the minimum homogenization volume 
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3.3 Discrete Element Modeling 

3.3.1 General Theory 

Originally developed by Cundall et al.(1979), the discrete element method is a 

numerical scheme that has been successfully used to simulate the response of granular media 

by modeling the dynamic behavior of assemblies of model particles ( e.g., circular disks, 

spheres, blocks, etc.). A large body of previous research (for example, Thorton 1988, Ting 

1989, Willams 1988, Walton 1991, Ng 1992, Rothenbrug 1993, Sadd et.al 1993) have 

established the usefulness of this numerical modeling scheme for paniculate materials. The 

method makes simplifying constitutive assumptions for each particle (commonly assuming 

rigid body behavior) and then uses Newtonian mechanics to determine the translational and 

rotational motion of each particle in the assembly. In order to establish inter-particle contact 

behavior, the assumed rigid particles are allowed to have small overlapping contact, and thus 

contact forces are developed as a result of particular stiffness and/or damping characteristics. 

The technique establishes a discretized time stepping numerical routine, in which granule 

velocities and positions are obtained through numerical integration of the computed 

accelerations. Using the principle of causality, it follows that during an appropriately small 

time step, disturbances cannot propagate from any disk further than its immediate neighbors 

Under these conditions, the method becomes explicit, and therefore at any time increment the 

resultant forces (and thus the accelerations) on any particle are determined solely by its 

interactions with its contacting neighbors. For applications to wave propagation, the 

movements of the individual particles are a result of the propagation of mechanical 

disturbances through the medium Consequently, the wave speed and amplitude attenuation 

(intergranular contact force) will be functions of the physical properties of the discrete 

medium, i.e., the microstructure or fabric 

The general concept of the method may be explained by considering a general two- 

dimensional particulate assembly as shown in Figure 3.2. Isolating attention to the i-th particle 

and applying Newton's laws yields 
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N 

Y Fij + F' = m.x. 
7=1 (3.1) 

N 

£ M'} + M' = 7.0. 
7 = 1 

where F'-' are the j-contact forces on the I-th particle, F' represents any non-contacting forces 

on particle I, M'J are the moments (about the particle's mass center) resulting from contact 

forces F'J, M' is the resultant moment from any non-contacting forces, m- is the particle mass, 

and 7| is the mass moment of inertia. With given contact and non-contact forces, the linear and 

angular accelerations of the I-th particle can thus be determined from this system of equations. 

With the accelerations known, the velocities and displacements may be obtained through 

numerical integration using finite differencing schemes. 

It is obvious that the contact response between neighboring particles plays a very 

important role in the use of this numerical method to simulate wave propagation through 

granular materials Past research, Sadd et al. (1993) has investigated the use of several 

contact laws within the discrete element modeling scheme. Establishing a local normal and 

tangential coordinate system at each contact between adjacent particles, a contact law can be 

constructed relating interparticle force to the overlapping deformation and deformation rate. 

In general such a contact law between adjacent particles could be written as 

F'] = F'J(6   v   5   v ) 

(3-2) 

F'J = F,'J{b ,v ,0   v) 

where ön and 6, are the relative normal and tangential displacements between particles I and 

j, and vn and v, are the relative normal and tangential velocities. Contact relations (3.2) may 

also be history dependent, and a Coulomb-type friction law is commonly incorporated to 

place limits on the tangential response. Specific forms of such contact relations have included 

Hertz-Mindlin theory and linear, non-linear, and non-linear hysteretic laws (Sadd et.al 1993). 

Previous results have indicated that the non-linear hysteretic deformation law for the normal 
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forces provided simulation results which compared favorably with experimental data, and this 

particular law has been chosen for use in the current study. 

3.3.2 Particle Contact Detection Algorithims 

The discrete element scheme requires the determination of particle contact detection and 

establishment of contact normal and tangential directions. Elliptical shaped particles have 

unique outward surface normals with no singularities, and thus such contact detection and 

geometry can be rather easily calculated. Our approach uses the robust schemes originally 

developed by Ting (1993). Figure 3.3 illustrates two elliptical particles in contact with some 

overlap which is taken as contact deformation. Based on analysis of particle (I), the normal 

and tangential directions at contact point B (established with virtual ellipse) can be 

determined, and the intersection of the determined normal direction with ellipse (j) occurs at 

point A The distance AB is thus taken as an approximation of the normal contact 

deformation The same procedure is repeated for particle (j), thus yielding another set of 

normal and tangential directions and contact overlap. Each of these sets are then averaged 

between the two particles to determine the final values of the normal and tangential directions 

and contact deformation. The tangential contact displacement increment is determined by the 

relative tangential displacement of the contacting elliptical particle mass centers and the 

relative rotational displacements of each particle. 

3.3.3 Inter-Particle Contact Laws 

The overall wave propagational characteristics including wave speed and amplitude 

attenuation depend on the micro-processes of dynamic load transfer between particles. Since 

the load transfer is governed by the particle to particle contact mechanics , the wave 

propagation characteristics will depend on the inter-particle contact laws. A nonlinear- 

hysteretic normal contact law illustrated in Figure 3.4 was developed by Sadd et al. (1993) 

and has been effectively used in DEM simulation of dynamic load transfer. This law may be 

specified as: 
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FnL = aLd
p . . . loading 

Fn = \ FnU = au6p*q . . . unloading, reunloading (3.3) 

Fnm. = PFnL + (l ~^Fnu ■ ■ ■ reloading 

The value of q and ß are determined by 

a = (Ab       Y 1 v        n, max/ 

6  -6 (3.4) 
P =       "      """ 

n n.mm 

n,max n.mm 

while the value of av is determined from the continuity requirement at the inception of 

unloading. The values of aL, p, r, and A are related to material and geometric properties of 

the particles. Our previous research for a photoelastic granular material (Homalite 100) found 

that DEM simulations matched experimental data with p = 1.4 and r = 2 . 

It was also found however, that aL and A should be related to the particle's radius of 

curvature at the contact point, and for non-circular, elliptical particles, the surface curvature 

varies with surface location. To investigate this contact surface curvature relationship, several 

wave propagation tests were conducted on regular assemblies with simple fabric. These 

assemblies include straight single chains, body-centered cubic, and hexagonal close-packed 

geometries. The results of these characterization studies are shown in Figure 3.5 which 

illustrates the contact parameter values used in the DEM modeling of each regular assembly. 

These simulations gave reasonable agreement with the corresponding data collected from 

dynamic photomechanics experiments for Homalite 100 material (Zhu et.al. 1996). These 

results then provide an estimate of the behavior of the contact law parameters as a function 

of contact radius of curvature. A curve fitting algorithm gave the relations 

a.   = (1.34 +41.44/') x 108     (NlmXA) L (3 5) 
A  =  -405.9 +(5.13 x 105)r -(1.12 x 10>2      (m  ]) 

and these are included in our numerical simulation code. If two contacting elliptical particles 

have different radii of curvature, averaged values for A and aL are used. With regard to the 
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tangential contact law, the form (with some modifications) proposed by Walton et.al.(1991) 

was adopted . This law includes a decreasing tangential contact stiffness with an increase of 

the tangential force, and provides for a zero stiffness during full sliding. 

3.4 Material Model Generation 

To investigate the fabric effect of wave propagation through granular materials with 

elliptical particles, large model assemblies need to be constructed with various degrees of 

granular anisotropy and microstructure . In order to characterize microstructure in assemblies 

of elliptical particles, three vector fabric measures were chosen including: branch vectors, 

contact normal vectors and orientation vectors (see Figure 3.1). It was felt that these three 

measures could adequately describe most of the important microstructural properties of such 

materials. A random elliptical particle assembly generator was developed whereby assemblies 

were created by a starting line of randomly spaced particles of a specified orientation. 

Subsequent vertical layers were added to fill out the assembly. By controlling the random 

spacing limits, particle eccentricity and orientation vectors, assemblies can be created with 

controllable microstructure. As shown in Figures 3.6-3.11, a total of six model assemblies 

have been generated in this fashion, for different values of orientation vectors. All models 

have elliptical particles of identical size with major axis of 50mm, minor axis of 20mm and a 

thickness of 6mm. Large size particles were used to allow for future comparisons with 

anticipated experimental efforts. The two cases with orientation of 0° and 90° had uniform 

spacing between particles. Also included in Figures 3.6-3.11 are the respective distribution 

plots of the branch and contact normal vectors for each assembly model. Other characteristics 

of the six models are listed in Table 3 1 

Each of the constructed assemblies were subjected to dynamic loadings to create a 

wave propagation situation, and this behavior was modeled using our discrete element wave 

propagation code The simulations involved the propagation of plane-type compressional 

waves moving in the vertical direction generated by simultaneously loading all particles along 

the bottom of each assembly with a transient input of triangular time history. The input pulse 

had a peak value of 2.5 kN and a period of 110 us. From a continuum point of view, this type 

of loading will input primarily a planar P or dilatational wave. Of course, as the combined 

dynamic signal moves through the granular medium, some small tangential interparticle 
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contact forces will develop, and thus at the micro-level, there will be some partitioning of the 

signal into a shearing mode. We would not however, classify this mode as a shear wave 

component. 

The primary interest of the DEM simulations are to determine the wave speed and 

amplitude attenuation behaviors. The original time-coherent input plane wave will gradually 

become spatially and temporally discontinuous with propagation distance, and thus 

determination of the wave front and wave amplitude need to be established. The wave speeds 

are calculated by determining the propagation time of the averaged wave profile, while 

attenuation is calculated through a transmission ratio of averaged output to input signal per 

length of propagation. To calculate the transmitted or output wave signal, an imaginary 

horizontal line was drawn near the boundary opposite to where the input loadings were 

applied. If a branch vector of a pair of particles in contact or potential contact is intercepted 

by this imaginary line, the normal contact load component perpendicular to the imaginary line 

is recorded. In this fashion, the contribution of the individual particle contacts can be 

determined, and these recorded loads are then summed and averaged over all contacts 

associated with the output line. This procedure then establishes the average output wave 

signal. Because load transfer through the initial first layer of particles occurs with special 

attenuation and dispersion characteristics, it was felt that simply using the boundary loadings 

to represent the input signal would not provide a correct value for determination of material 

transmission. Therefore the input loadings were collected from the interparticle contacts after 

one layer of propagation using the same scheme used for determining the average output 

loadings. 

To investigate the amplitude attenuation in each material model, the following 

transmission ratio was used, 

J_ Y F{n) 
r- , i- i,     Z__/      output 
F  ,  . F-    ,       N n-_\ i -rn    _ output input    _ o  "    ' 1^ 

£>",". D { 

JL y F {n) 
A r    '   '      input 

where Fmtpill and Fmpul are the averages of the peak output and input contact loads, N 0 and /V 

, are numbers of contacts along the output and input lines, and D is the propagation distance 
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between input and output lines. 

3.5 Results 

Discrete element simulations of the dynamic, wave propagation response of each 

model assembly in Figures 3.6-3.11 were conducted, and the results of the wave speed and 

transmission ratio are summarized in Table 3.1. Figure 3.12 shows a specific transmission 

result for model A-4 in which the time dependent behavior of the transmission ratio is plotted. 

This averaged output signal contains contributions from numerous individual propagation 

paths through the medium, and significant attenuation and dispersion are observed. The 

arrival time of the peak amplitude of this averaged signal is used to calculate the wave speed 

of the simulation. 

Results in Table 3.1 indicate that the wave speed and transmission ratio correlate to 

some degree with the orientation vector of the media. For example, with the exception of 

media model A-5, the smaller the angle made by the input loading and orientation vector, the 

larger the transmission ratio will be. The apparent contradiction observed in model A-5 may 

be explained by viewing the contact normal vector distributions. For model A-5, many of the 

contact normals lie very close to the wave propagation direction, thus indicating preferred 

propagational directions in the vertical. This indicates that contact normal vectors are also an 

important factor in relationships with wave propagation and it can be observed for all 

assembly models that there is an increase in wave speed as the contact normal distribution 

becomes more vertical. With regard to the void ratio, it is observed (again with exception of 

model A-5) that wave transmission varies inversely with the void content, however, other 

fabric factors in these models probably play a more significant role in the attenuation behavior 

Another interesting micromechanical behavior to consider for elliptical particulate 

media is the particle rotation. When waves propagate through such granular media, higher 

attenuation may be accountable from kinetic energy losses through individual particle 

rotations. In order to investigate this behavior, the average rotation per particle for each of 

the model assemblies was determined. This value was calculated over a fixed duration of time 

(400us), corresponding to the approximate transit time for the wave to propagate across a 

typical sample. Values of this rotation measure for each model assembly are shown in Table 

3.1, and it is observed that a correlation does seem to exist between the attenuation and 
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particle rotation. Simulations having higher wave attenuation correspond to assemblies with 

high average particle rotation. 

In order to evaluate effects of boundaries and numbers of particles, one particular case 

with orientation angle of 30°, was simulated with two models (A2 and A6) with different 

numbers of particles. As shown in Figures 3. 7 and 3.11, the fabric of these two assemblies 

are almost identical, and thus DEM simulations will isolate the effects related to assembly 

size. Results in Table 3.1 for these two assemblies indicate that very little differences exist in 

the predicted wave speed and attenuation. Therefore it appears that the chosen meso domain 

size is reasonable for the wave propagation simulations. 

3.6 Wave Propagation - Fabric Relationships 

In order to construct a relationship between wave propagation and material fabric, 

averaged fabric vector measures are needed. Since our wave motion also contains a 

propagation direction, averaged fabric should be measured with respect to this direction. With 

this in mind and denoting the unit normal vector to the input wave front as p, we can define 

three averaged projected fabric measures based on orientation, contact normal and branch 

vectors as 

1   N 

m = —Y]p-m(i) 

N t-.i 

1    Nc 

Nh 7- 

where N, Nc and Nb are the number of particles, contacts and branch vectors, respectively 

It is expected that the wave propagational characteristics are related to these fabric 

measures, and a simple power law relation for the wave speed and amplitude attenuation is 

proposed in the following form 
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TR • _ D 0 
F.(m,n,b) = A.mp'+B  bq,+Cn'' (3.8) 

A reasonably good fit with the DEM simulations may be attained with parameter values 

Jo.0768l JO.03261 fo 1921 

' ~1 495.3 J  '    ''" I  18.1  J '    '"   [380 21 
(3.9) 

2.8 1 f  4.2 1 (3.3) 
P'=ko.    •''=     -3.15 K'=     3.2 

Comparisons of DEM simulations with values from this power law relation are given in Table 

3. 2. The average difference between the two is approximately 7%, thus indicating that the 

relationship (3.8) may be appropriate for assemblies of this type 

3.7 Conclusions and Discussion 

Using discrete element methods, the wave propagational response of several granular 

material models composed of equal-sized, elliptical particles has been determined. Wave 

speed and amplitude attenuation has been calculated for a planar input wave of transient 

triangular time history. Because of the coupled nature of the three primary fabric measures 

(branch, contact normal and orientation vectors), it was not possible to develop random 

assemblies of elliptical particles with independent control of each fabric measure Natural 

granular materials formed under gravitational action commonly yield anisotropy because 

particles tend to deposit with a preferred direction of their long axis Thus the models under 

study were generated primarily to provide comparisons with the orientation fabric, however, 

some relationships with the contact normal distributions were also made. Based on the fact 

that the branch vector distributions of the media models A-2, A-3 and A-4 are not markedly 

different (see Figures 3.7-3.9), it was concluded that contact normal and orientation vectors 

play the predominant role in determining wave propagational characteristics for assemblies 

with elliptical particles. Results generally indicated that higher wave speeds and amplitude 

transmissions occur in assemblies with larger distributions of contact normal and orientation 
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vectors along the direction of propagation. 

Some anomalous behavior occurred in the regular symmetric assemblies in models A-1 

and A-5. However, it can be observed that because of the special nature of the packing fabric 

in these assemblies, very little particle rotations occurred during wave propagation. Studies 

of average particle rotation demonstrated that a correlation generally existed between wave 

attenuation and particle rotation Simulations having higher wave attenuation corresponded 

to assemblies with high average particle rotation, thus indicating that micro-rotations provide 

an energy loss mechanism. 

Propagational characteristics of attenuation and wave speed were related to material 

fabric through an empirical power law relation involving averaged projected fabric vectors. 

These projected fabric measures were based on the distributions of orientation, contact 

normal and branch vectors with respect to the direction of wave propagation. Reasonably 

good comparisons with DEM simulations resulted from this relationship. Although it would 

be difficult to argue general validity of the power law relation, results do indicate that the idea 

of relating such propagational variables to averaged projected fabric measures is reasonable. 
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Assembly 
Model 

Orientation 
Angle 

No. of 
Particles 

Goord. 
No. 

Void 
Ratio 

Rotation 
(0°) 

Trans. 
Ratio 
(TR) 

Wave 
Speed 
(m/s) 

A-l 0 328 3.65 0.188 0 0.110 438 

A-2 30 333 3.68 0.205 0.407 0.091 570 

A-3 45 367 3.67 0.226 0.763 0.062 587 

A-4 60 465 3.73 0.243 0.979 0.043 603 

A-5 90 336 3.69 0.184 0 0.120 400 

A-6 30 1341 3.68 0.205 0.407 0.093 574 

Table 3.1. Summary of Various Fabric Measures and Wave Transmissions for Six Model 
Assemblies (Orientation Angle = the acute angle between major axis and vertical) 

Orientation 
Angle 

Average 
Projected 

Contact Normal 
Vector 

Average 
Projected 
Branch 
Vector 

Transmission Ratio 

0m 
Wave Speed (V) 

DEM Formula DEM Formula 

0 0.5 0.866 0.110 0.114 438 565 

30 0.3718 0.845 0.091 0.075 570 541 

45 0.5061 0.79 0.062 0.061 587 574 

60 0.5665 0.732 0.043 0.049 603 603 

90 0.866 0.5 0.120 0.121 400 400 

Average Relative Error 7.12% 0.072 

Table 3.2. Summary of DEM Simulation and Empirical Formula, Equation (8) Results for 
Five Model Assemblies 
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Figure 3.1. Common Fabric Measures for Granular Materials 
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Figure 3.2 Discrete Element Modeling Procedure 
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Figure 3.3. Deformation for Two Overlapped 
Elliptical Particles 
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Figure 3.4. Nonlinear Hysteretic Contact Law 
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Assembly 

Contact Normal Vectors Branch Vectors 

Figure 3.6. A-l Media Model and Its Fabric Parameter Distributions 
(Orientation Angle =0°) 

73 



Assembly 

Contact Normal Vectors Branch Vectors 

Figure 3.7. A-2 Media Model and Its Fabric Parameter Distributions 
(Orientation Angle = 30°) 
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Figure 3.8. A-3 Media Model and Its Fabric Parameter Distributions 
(Orientation Angle = 45°) 
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Figure 3.9. A-4 Media Model and Its Fabric Parameter Distributions 
(Orientation Angle = 60°) 
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Figure 3.10. A-5 Media Model and Its Fabric Parameter Distributions 
(Orientation Angle = 90°) 
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Figure 3.11. A-6 Media Model and Its Fabric Parameter Distributions 
(Orientation Angle = 30° , Large Assembly) 
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CHAPTER 4 

AN EXPERIMENTAL INVESTIGATION OF STRESS WAVE 

PROPAGATION BEHAVIOR IN GRANULAR ASSEMBLIES OF 

CONCAVE-CONVEX PARTICLES 

4.1 Summary 

An investigation was conducted to study stress wave propagation phenomenon in 

granular assemblies of concave particles. In particular, attention was focused on the effect of 

contact profile and granular media porosity on inter-granular load transfer, wave velocity, and 

wavelength of a stress wave. The stress wave was generated by an explosive loading. 

Dynamic photoelasticity, the combination of high speed photography and photoelasticity, was 

employed as the experimental method. The photographs thus obtained were analyzed to 

determine contact load as a function of time, wave velocity and wavelength. Specimens were 

made of Homalite-100, an optically birefringent material. Since some of the specimens were 

not circularly symmetric, experiments were conducted with the specimens oriented with the 

major physical feature both toward the incoming pulse and away from the incoming pulse 

The experimental results indicate that stress wave travels faster in the single chain assemblies 

with higher contact stiffness, which changes with the variation of contact profile. Also, stress 

wave propagates faster in single chain assemblies with lower porosity. Contact profile does 

not appear to change wavelength. However, porosity does affect wavelength. The 

experimental results also show that contact profile changes reflection mechanism within a 

particle therefore varying the contact load attenuation behavior 

4.2 Introduction 

The study of stress wave propagation in granular materials is important to many 

branches of science and engineering including geomechanics and powder metallurgy. Dynamic 

loads may occur due to earthquake motion, underground explosions, and construction 

operations. The ability to predict the behavior of structures and foundations necessitates the 

understanding of wave motion in granular media such as sand, rock, and clay. Granular 

materials, having spatial discontinuities in their mass density, are modeled here as an array of 
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elastic particles interacting only through contact mechanics, and wave propagation in them 

is strongly dependent on their microstructure. A sizeable amount of work has been done to 

study the wave propagation phenomenon in granular materials from a microstructural 

standpoint. Some of the earliest work is due to Ida, (1939), who used a simple lumped mass- 

spring model. Contemporary work has proposed new modeling approaches such as the fabric 

tensor theory (Nemat-Nasser, 1983), the distributed body theory (Goodman and Cowin, 

1972), and the distinct element method (Cundall, et al., 1979, and Sadd 1993) in order to 

predict the behavior of granular media. 

Experimental techniques, such as the dynamic photoelasticity, have been employed 

to study the dynamic response of granular materials under explosive loading ( ShukJa, 1985 

and 1992). Later studies by Shukla, et al., (1991) using photoelasticity in conjunction with 

high speed photography further investigated the effects of particle shape on wave propagation 

behavior in granular assemblies of elliptic particles. They showed that the wave velocity was 

dependent on the particle shape. The wavelength of the stress wave pulse showed no change 

with the particle shape as long as the contact interval (the number of contact points per unit 

wavelength which was four disk diameters) is kept constant. The load transfer characteristics 

change with variations in particle shape. However, in most of the past work the granular 

media was simulated by assemblies of circular or elliptical particles. All contacts were 

therefore between two convex surfaces. In real life, some contacts are between concave and 

convex surface. The change of particle shape and thus of contact profile causes the contact 

stiffness to change. If the radius of curvature at the contact is increased, while keeping the 

contact interval constant, the contact stiffness will increase, and this would imply a higher 

wave velocity. This may also change the wave propagation characteristics 

An experimental study has been conducted on the dynamic response of granular 

materials with specific interest in investigating the effect of contact profiles such as concave- 

convex contact, dual-contact, and porosity on stress wave propagation characteristics. The 

experimental results indicate that stress wave travels faster in the single chain assemblies with 

higher contact stiffness, which changes with the variation of contact profile. Also, stress wave 

propagates faster in single chain assemblies with lower porosity. Contact profile does not 

appear to change wavelength. However, porosity does affect wavelength. The experimental 

results also show that contact profile changes reflection mechanism within a particle and 



therefore varies the contact load attenuation behavior. 

4.3 Experimental and analytical procedure 

Dynamic photoelasticity, the combination of photoelasticity and high speed 

photography, was used as the experimental technique throughout this investigation. This 

method has been shown by many researchers to be very efficient in the study of dynamic wave 

characteristics in granular media (for example Shukla 1991). As stated earlier, Homalite-100 

was chosen to make specimens. To fabricate the various particles, one inch diameter circular 

disks were machined into the geometries shown in Table 4.1. A cooling system was used 

during machining of the specimens to avoid producing any heat related residual stresses in the 

specimens. 

The granular media was simulated by single chain assemblies of similar shaped 

particles in contact. One such setup is shown in Figure 4.1 (a). The same shaped particles 

were also used in an alternative setup, as shown in Figure 4.1 (b), to investigate the effect of 

incident direction of the wave pulse on the propagation characteristics. The ten different 

single chain assemblies used in this study are shown in Figure 4.2. 

The experimental models were placed on the optical bench of a high speed Cranz- 

Schardin type camera. The particles were loaded by exploding a small amount(10 mg) of Lead 

Azide in a specially designed charge holder. The camera was triggered at some prescribed 

delay time after igniting the explosive that was placed on top of the model (see Figure 4.1). 

The high speed photography system generates a series of high intensity, extremely short 

duration, pulses of light and provides twenty photoelastic images at discrete times during the 

dynamic event. 

A typical sequence of six images for the single chain setup is shown in Figure 4 3 

These images of the propagation phenomenon were enlarged and digitized to facilitate the 

analysis. The Hertz stress field equations along with the stress optic law (reference previous 

chapter) were used to calculate the contact load at a particular contact point and time, by 

applying the multi-point, non-linear least square method suggested by Shukla and 

Nigam(1986). The wavelength of the stress pulse can by measured directly from the 

photographs of the wave propagation process (Figure 4.3) The propagation distance is 

plotted as a function of time to obtain the wave velocity 
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4.4 Experimental results and discussions 

To investigate the phenomenon of stress wave propagation in granular assemblies of 

concave particles, a series of experiments were conducted on several single chains of various 

particles. The geometries of these particles are shown in Table 4.1 and single chain assemblies 

used in the study are shown in Figure 4.2. The results from the experiments are discussed in 

two subsections with the first dealing primarily with the effect of contact profiles and second 

the effect of porosity on wave propagation behavior. 

4.4.1 The effect of contact profile 

Typical isochromatic fringe patterns for chains 1 and 2 of Figure 4.2 are shown in 

Figures 4.3 and 4.4, respectively. These two chains have identical particles, however in chain 

2, the particles were rotated 180° to investigate the effect of the incident direction of the wave 

pulse on wave propagation behavior. Likewise, Figures 4.5 and 4.6 show the isochromatic 

fringe patterns for chains 3 and 4, (see Figure 4.2), respectively 

The discrete images of the wave propagation phenomenon as shown in these figures 

give the position of the wave front at that instant of time. These pictures are enlarged using 

a Beseler enlarger and the wave front is digitized using a Hitachi digitizer interfaced with an 

IBM personal computer. Thus the wave propagation distance as a function of time is 

obtained, the slope of which gives the wave velocity. 

Data for the average wave velocities in chains 1 and 2 are shown in Figure 4.7, and 

the computed values were 960 m/s and 950 m/s, respectively Figure 4.8 shows that the 

average wave velocities in chains 3 and 4 are 1080 m/s and 1110 m/s, respectively. The 

velocities in chain 1 and 2 are approximately the same, as well as the velocities in chain 3 and 

4. This shows that the incident direction of the wave pulse has not affected the average pulse 

velocity for these particle shapes However, the velocities in chain 1 and chain 2 are more 

than 10% lower than those in chain 3 and chain 4. Notice that in chain 1 and chain 2, the 

contact of two adjacent particles is between a flat and a convex surface. On the other hand, 

the contact of two adjacent particles in chain 3 and chain 4 is between a concave and a convex 

surface. The fact means that contact stiffness in chain 1 and 2 is lower than that in chain 3 and 

4. Recall an approximate equation (Takahashi, 1949) for wave velocity in one dimensional 

granular media 
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V*d.  - (4.1) 
\ m 

where d is a distance measure usually taken to between the centers of two particles in contact, 

K is the effective contact stiffness, and m is the mass of the particle. For the case studied, both 

group of chains have same d value. The particle mass of first group (chain 1 and 2) is slightly 

lower than that of second group (chain 3 and 4). However, higher contact stiffness in the 

second group makes velocities in this group higher than those in the first group. 

Compared with the pulse velocity in one inch diameter circular disk chain, which was 

1070 m/s (Shukla, 1990), the wave velocities in chains 3 and 4 are slightly higher because of 

larger contact stiffness. However, the wave velocities in chains 1 and 2 are slightly lower than 

that in one inch diameter circular disk chain despite the larger contact stiffness. The reason 

for this is the decreased distance between the centers of two particles in contact, d, in chains 

1 and 2 as compared with a one inch diameter circular disk chain 

The wavelengths for chains 1, 2, 3 and 4 were directly measured from Figures 4.3-4.6 

The pulse lengths for chains 1 and 2 were found to be equal (81mm) Chains 3 and 4 also 

produced equal pulse lengths (87mm) This would lead one to believe that the incident 

direction of propagation has no effect on the pulse length It was also noticed that 

wavelengths of chains 1 and 2 are approximately the same as those of chains 3 and 4. The 

stress pulse lengths in these chains were nearly four particle lengths 

Experimental data, obtained from photoelastic experiments on various single chain 

assemblies, were used to determine the normal contact loads at different contact points. The 

analysis method consists of the Hertz stress field equation provided by Smith and Liu (1953) 

coupled with a multi-point non-linear technique proposed by Shukla and Nigam (1986). This 

technique makes use of the method of least squares in conjunction with the Newton-Raphson 

method to compute the contact stresses and loads. Figure 4.9 shows the typical normal 

contact load variation for a single chain assembly. The contact loads P were normalized with 

respect to the peak contact load occurring between particles 4 and 5 (P4.5max). This contact 

was chosen for normalization, because at this point the wave had traveled through four 

particles (one wavelength) and thus had stabilized. This normalization allows for easy 
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comparison between different experiments. Figures 4.10 and 4.11 give the contact load 

attenuation plots for these two group assemblies (chain land 2, chain 3 and 4) as the stress 

wave traveled down the single chain assemblies. As shown, the contact load attenuation in 

chain 1 is larger than that in chain 2, and the contact load attenuation in chain 3 is larger than 

that in chain 4. Carefully comparing the two figures, one can also find that contact load 

attenuations are approximately the same between chains 1 and 3, as well as between chains2 

and 4. It was known that wave propagation through a granular media occurs by contact 

mechanisms which result in load transfer from particle to particle. Within a particle, however, 

the wave propagation process is through a reflection mechanism. In other words, reflection 

mechanism within a particle is a very important factor on load attenuation behavior. Figure 

4.12 shows the sketches of reflection mechanisms in chains 1 to 4. One can see that the 

reflection mechanisms in chains 1 and 3 are the same and have a "convergent feature". On the 

other hand, the reflection mechanisms in chains 2 and 4 possess a "divergent feature". This 

may be an explanation for the difference in contact load attenuation for various chains. 

One of the most important feature in granular assemblies of concave particles is that 

concave particles will allow two or more neighboring contacts. This feature provides a unique 

fabric mechanism to alter the mechanical response of such materials, and therefore could have 

significant effects on the wave propagational characteristics. Figures 4.13 and 4.14 show 

isochromatic fringe patterns for chains 5 and 6 (see Figure 4.2). In these two chains, there are 

two contacts between adjacent particles. Chain 6 was used to investigate the effect of the 

incident direction of the stress pulse on wave propagation behavior One obvious fabric 

change is that the contact normals are no longer along the direction of the wave propagation 

in these chains. From Figure 4.15 one can see that the wave velocities in these two chains 

(v=740 m/s for chain 5 and v=760 m/s for chain 6) drop dramatically compared with the 

velocities in single contact assemblies (v=960 m/s, 950 m/s for chains 1,2, and v=1080 m/s, 

1110 m/s for chains 3, 4, respectively) Variation of contact normal direction may be one of 

the important reasons for velocity drop. Also, velocity data shows that the incident direction 

has not affected the wave velocities. 

Figures 4.13 and 4.14 show that the wavelengths for both chain 5 and chain6 are 

approximately 7 particles (109 mm). They are much longer than that in chains 1-4. The 

elongation of wavelengths in chains 5 and 6 may be caused by contact mechanism. 
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A major difficulty in running the experiments with dual-contact particles is that too 

much input load will result in the breaking of particles. Data thus collected cannot 

demonstrate the real load attenuation characteristics On the contrary, less input load will not 

allow to collect sufficient data to describe the whole contact load history. An alternative 

photoelastic material is suggested to investigate the load attenuation behavior in multiple 

contacts granular assemblies. 

4.4.2 The effect of porosity 

From geometry point of view, the particles with ring shape belong to concave group. 

Ring particles, as shown in Figure 4.2 (chains 7-10), have same contact profile as convex 

particles, that is contact between two convex surfaces. However, the porosity of granular 

assembly will change with the variation of the hole size in ring particles. Figures 4.16 and 

4.17-4.20 show isochromatic fringe patterns for solid disk chain and chains 7-10 in Figure 

4.2, respectively. Experimental results for solid disk chain is demonstrated here for the 

purpose of comparison Using velocity calculation technique described before, one can 

determine the velocities in these chains. We define the porosity, r\, as in equation 2, 

area of hole 
T)  =  1  (4 2) 

area of disk v     ' 

The relation between velocity and porosity is shown in Figure 4.21. The plot shows that 

when q increases, i.e. the hole is made larger, the average velocity decreases. Compared with 

the wave velocity in circular disks, the average velocity changes very little for small values 

of q, i.e. a very small hole Pulse velocity decrease (from 1100 m/s to 810 m/s) as porosity, 

q, increase (from 00.0 to 0.25) because particle stiffness decrease as porosity increase 

Wavelengths in ring particle assemblies were measured directly from the isochromatics 

pictures Compared to the solid disk, these ring particles have lower stiffness. Therefore, one 

should expect a longer wavelength in these ring particle chains than that in solid disk chain 

which was four particle diameters (ShukJa and Damania, 1987). However, as shown in Figure 

4.22, when porosity, q, is very small (chain 7), wavelength does not change too much. As 

porosity  increases,  i.e.  the stiffness decreases,     the  wavelength  first  decreases to 
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approximately three particle diameters (chains 8 and 9), then increases to about five particle 

diameters (chain 10). It appears that there may be a threshold at which the size of the hole, 

i.e. structural stiffness of the chain, becomes a significant factor in the wavelength. 

Figure 4.23 shows typical isochromatic fringes for a solid disk and a ring particle 

under static diametrical compression. The fringes in solid disk appear Hertzian in shape while 

the fringe patterns become distorted in ring particle because of the boundary effects produced 

by the hole. Due to the fringe distortion, Hertz contact equations can not be used to analyze 

the contact load data any more for ring particles. Other experimental techniques, such as 

caustics, are suggested to be used to investigate dynamic contact load characteristics in 

assemblies of ring particles. 

4.5 Conclusions 

The experiments conducted in this study demonstrate the effects of contact profiles 

and porosity in granular assemblies of concave particles on stress wave propagation behavior. 

The results indicate the following: 

• The variation of contact profile changes the contact stiffness between the particles, 

therefore changes the wave velocity in the granular materials. The higher contact 

stiffness allows stress wave to travel faster in granular materials. For the same contact 

profile, incident direction of pulse has no effect on the wave velocity. 

• For the same contact profile, the incident direction has effect on contact load 

attenuation behavior The variation of the incident direction changes the reflection 

mechanism within concave particles. It was seen that the reflected wave from a 

concave or flat surface provides a "divergent feature", which makes contact load 

attenuate more severe. Conversely, reflected wave from a convex surface provides a 

"convergent feature", which makes contact load attenuate gently. 

• Contact profile and incident direction of pulse do not appear to change the 

wavelength. 

• The porosity of granular media changes the wave velocity. The wave velocity 

decreases as porosity increases The porosity also has effect on the wavelength and 

contact load characteristics However, the detailed reasoning for the change in 

wavelength and quantitative evaluation of contact load need further study. 
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Table 4.1. Geometric parameters for different particles used in the experiments 

Group No. Specimen 

Geometry 

Ri _r 
\r 

**,   rh 

Rl orDl (inch) 

-f\ 

\ ^na 

D8 

\N 

0.5 

0.5 

0.5 

R2 or D2 (inch) 

infinite 

0.625 

NA 

0.12 

0.25 

0.365 

0.5 

h (inch) 

0.25 

0.25 

NA 

NA 

NA 

NA 

NA 
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Figure 4.1. Experimental set up 
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Figure 4.2. The ten different single chain assemblies used in the study 
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Figure 4.4. Isochromatic fringe patterns for chain 2 
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Figure 4.5. Isochromatic fringe patterns for chain 3 
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Figure 4.6  Isochromatic fringe patterns for chain 4 
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Figure 4 13. Isochromatic fringe patterns for chain 5. 
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Figure 4.14. Isochromatic fringe patterns for chain 6. 
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Figure 4 16 Isochromatic fringe patterns for solid disk chain 
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Figure 4 17. Isochromatic fringe patterns for chain 7 
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Figure 4.18. Isochromatic fringe patterns for chain 8. 
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CHAPTER 5 

A COMPARISON OF EXPLOSIVELY GENERATED PULSE 

PROPAGATION IN ASSEMBLIES OF DISKS AND SPHERES 

5.1 Summary 

An experimental investigation has been conducted to compare and contrast the 

dynamic load transfer process in single chain assemblies of two and three dimensional 

particles. In particular, single chain assemblies of disks and spheres were subjected to 

explosive loadings and strain gages were employed to collect the resulting strain pulse 

information. The data was analyzed to compare the pulse velocity, contact load attenuation, 

dispersion, and pulse break up in disks and spheres. The comparison shows that the average 

pulse velocity in disks is higher than in spheres and the pulse attenuation is lower in the disks. 

The results also show that there is a characteristic pulse which will propagate through a single 

chain of disks without significant dispersion. The characteristic pulse propagating in 

assemblies of spheres, however, shows dispersion. For both disks and spheres, when the input 

pulse is sufficiently long, it undergoes a ringing process which breaks the long pulse up into 

smaller signals of size approximately equal to the characteristic length. The larger the input 

pulse is with respect to the characteristic pulse length, the longer the break up takes. This 

break up is also accompanied by a redistribution of energy which is easily seen in the 

frequency domain 

5.2 Introduction 

The study of wave propagation and dynamic load transfer in granular and particulate 

media has been of interest to many different fields of science and engineering including 

geomechanics, powder metallurgy, pharmaceutical and agricultural processes. With regard 

to geomechanics, various seismic interests are related to wave propagation in sands and rocks 

produced from earthquake or explosive loadings. Due to the discrete nature of granular 

materials, mechanical loadings are transmitted in a discontinuous fashion through contact 

mechanisms between adjacent particles resulting in the establishment of finite numbers of load 

carrying paths within the material (Oda et al„ 1982, ShukJa et al„ 1988). Such load transfer 
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mechanisms are primarily controlled by the particles' material and geometric properties. These 

local geometric properties include such variables as particle size, shape and relative location, 

and are generally referred to as the material fabric. It has been clearly demonstrated that this 

local microstructure plays a dominant role in the transmission of both static and dynamic 

loadings through such materials. For several years our research group has studied the effects 

of various micro-fabric variables on wave propagation, and have correlated wave speed, 

amplitude attenuation, and dispersion with several fabric measures (see for example, Shukla, 

et.al., 1985, 1992, 1993a, 1993b and Sadd, et.al. 1993). To date our investigations have 

primarily focussed on two-dimensional granular systems. Because real granular materials are 

composed of three-dimensional particles, our studies have been broadened to include this 

case. The current article describes some of our preliminary work dealing with the extension 

of our studies to three-dimensional situations, and comparisons with our previous two- 

dimensional results are made. 

Several static studies of the behavior of paniculate media using three-dimensional 

modeling have been conducted. Cundall (1988) has developed a three dimensional discrete 

element model where by spherical grains can be analyzed. Ghaboussi and Barbosa (1990) 

went further by using the discrete element method to analyze three dimensional paniculate 

assemblies where the particles were modeled as six sided solids with six degrees of freedom. 

The model was applied with success to granular flow problems. Using superquadrics, 

Williams (1992) developed a three-dimensional discrete element code capable of handling 

particles of general shape. 

Our study uses model assemblies of single chains of spherical particles to simulate the 

basic features of real granular materials. Experimental studies have been conducted using 

electrical resistance strain gages to collect dynamic information associated with the 

propagation of explosive loadings with pulse durations on the order of 100-lOOOus. Previous 

studies using such experimental techniques (Shukla, et.al., 1993a) have demonstrated the 

usefulness of this scheme. In order to investigate basic features of the non-linear wave 

propagation process, Fast Fourier Transform analyses of the transmitted wave profiles were 

conducted. It was found that the dispersion processes are related to material microstructure. 

The non-linear behavior was also analyzed through the use of soliton dynamics. 
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5.3 Experimental Procedure 

The experimental set-up used in this study is shown in Figure 5.1. In this work, 25.4 

mm diameter acrylic disks and spheres were used to simulate the granular media. The model 

assemblies consisted of long, straight, single chains of particles. An assembly of particles was 

then subjected to explosive loadings utilizing 10-30 mg of lead azide, where the variation in 

the amount used will be explained later in this section. The explosive loading initiated a 

compressive stress pulse which propagated down the assembly of disks or spheres via particle 

to particle contact. 

Electrical resistance strain gages (Micro-Measurements EA-13-03IDE-120) were 

used to record the dynamic strain profiles as the stress wave passed through the granular 

medium. For the disks, the strain gage was positioned 5 mm from the contact location and 

for the spheres the gage was located along the equator where the particle to particle contact 

points are considered the poles of the sphere. The choice of strain gage locations will be 

explained in a later section. The gages were connected to a bank of bridge amplifiers (Ektron 

model 563F) and these in turn were digitally sampled by a high speed data acquisition system 

(Lecroy Data Acquisition System) operating at a 1 MHZ sampling rate. From six to eight 

strain gages were used for each experiment, placed on discrete disks or spheres in the 

assemblies. This technique provided the strain pulse profile for a number of disks or spheres 

as the pulse propagated down the assembly. 

Using a small amount of explosive (10 mg) and passing the energy of the explosion 

directly into the chain results in a short duration (100-150 usec) pulse. If instead the energy 

is first passed through a material with a lower acoustic impedance and then into the assembly, 

the result will be an input pulse with a longer wavelength. By placing a soft or a semi-soft 

urethane between the charge holder and the first particle, input pulse lengths of 490 usec and 

1330 usec were obtained in the disk chain and 480 usec and 1190 usec for the sphere chain. 

However, in order to input sufficient energy, the amount of explosive had to be increased to 

a maximum of 30 mg. 

5.4 Theoretical Considerations 

5.4.1 Contact Load Analysis 

The technique of extracting contact load from strain gage data in the case of disks has 
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been well documented (Xu and Shukla, 1993) so it will be covered only briefly here. The 

normal and tangential stresses in the vicinity of the contact (Smith and Liu, 1953) are 

governed by the Hertz contact law and are given as 

o 
bz 

'Hi - x 4>2) 

bz b2 + 2z2 + 2x2 A 2TC 

7TlA b             *> b 
3 xck 

o    = 
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    +     
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(5.2) 

The co-ordinate system is defined in figure 5.2. The subscripts 1 and 2 refer to the two bodies 

making contact. R^ are the radii of the particles and p and ;v are the Young's moduli and 

Poisson's ratios. The space variables are x and z which identify the point at which the stresses 

are to be determined. The unknowns, b and ß, are the half contact width and the friction 

factor, respectively. 

For the single chain assembly of disks used in our experiments, the bodies are of the 

same material and have the same geometry which allows for the reduction of the constants 

A and A. Also, the strain gages were located along the z axis (x=0) and the particles were 

subjected to only normal stresses (ß = 0). This reduces the field equations to 
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The normal strain ea can be calculated using Hooke's law as 

6      =   — (o      -   V Ö   ) (5.4) 

and substituting for the stresses in equation (5.4) from equation (5.3) we get 

E 

(1  - v)b2 - 2vz: 2 vz 

A\/Ä 2 2 
(5.5) 

Once the strain gage location has been fixed at x=0 and at some value of z near the 

contact, e^ is obtained from the strain gage and equation (5.5) can be solved for the half 

contact width b. From the half contact width, the contact load can be determined from the 

following relation 

w Tib2 

2A 
(5.6) 

where w is the load per unit depth and A is as defined earlier. The above procedure was used 

to calculate the contact loads in disks. For spheres the technique used was more simple and 

straightforward. 

Researchers have developed field equations for a sphere under static diametrical 

compression (e.g. Sternberg and Rosenthal, 1952). However, the equations are best suited 
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for a point along the z axis at r=0 (i.e. inside the sphere where locating strain gages is 

difficult). Consequently, a simple calibration experiment was conducted to determine the load- 

strain relation. 

For this experiment, one of the instrumented spheres used in the dynamic studies was 

placed in an Instron testing machine and compressed. Recall that the strain gages on the 

spheres were located on the equator of the sphere with the loading taking place at the two 

poles. The gage was orientated to measure strain along the longitudinal line. During 

compression the applied load and the resulting strain were recorded on a digital storage 

oscilloscope. The experiment was repeated three times. 

Figure 5.3 shows the applied load and the recorded strain for the three separate 

experiments. The figure shows that the strain is linearly proportional to the applied load and 

that there was very little scatter introduced due to potential misalignment. The data set was 

fit with a least squares line yielding a calibration constant, k = -0.671 um/m per newton. Thus 

a static calibration constant was determined for the acrylic sphere used in the dynamic 

experiments. 

One may argue that the static calibration is not applicable to the dynamic experiment 

but it is proposed that when the strain recorded by a strain gage located at the equator of a 

sphere subjected to a dynamic strain pulse reaches the peak strain value, the sphere will be 

loaded in a state of quasi-static diametrical compression. This assumption will hold as long 

as the strain pulse length is larger than several sphere diameters For the cases studied, the 

strain pulse was at least four times the sphere diameter 

5.4.2 Fourier Transforms 

The explosive loading of granular assemblies produces a group wave that propagates 

through the assembly. This group wave is comprised of many discrete frequencies which 

travel together as a single pulse. It has been proposed (Shukla, et al., 1993a) that the particles 

making up a granular assembly act as a filter and that there is a characteristic pulse length that 

will travel in the assembly without significant dispersion If the input pulse is not of this 

characteristic length or period, the pulse will break up into wavelets, each of which is of the 

characteristic period. In this paper the Fast Fourier Transform is used to study the effects of 

input pulse period in single chain assemblies of disks and spheres by looking at the frequency 
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domain of the propagating wave. 

Fast Fourier Transforms (FFT) allow one to calculate the frequency spectrum 

associated with discretely sampled time domain data. The continuous Fourier transform pair 

for a function, F(t), defined for the time interval -°° to °° is given 

^(0 = —/■C(G>)e,'ü'</G>, 
2 % J 

(5.7) 
C(o>) =   ff(t) e  '"' dt 

C(w) represents the continuous Fourier transform, co is the angular frequency and I is the 

imaginary unit. The continuous Fourier transform is then the constituent sinusoidal (spectrum) 

of the original waveform F(t). Plotting C(w) versus frequency yields a diagram of the 

amplitude of each constituent sinusoid. 

One obvious difficulty in applying equation (5.7) directly to an engineering problem 

is that the integral needs to be evaluated over an infinite interval. The technique becomes 

suitable to computer algorithms if the integral can be approximated over a finite interval 

without losing any of the relevant signal information. 

The discrete Fourier transform provides the means for the integral approximation 

whereby the integral has been replaced by a summation. The discrete Fourier transform of the 

function F(t) is given 

G 
' 2n^ 

{ NT) 

fi! -   i - 2nkni 

= T £ F(k'0 e     N n = 0, 1, 2, . . ., N - 1 , (5.8) 
k = 0 

in where T>0 (T is the sampling period) and N is a positive integer Now if C and G are 

sufficiently "good" agreement for the points (2n7i/NT), the approximation is suitable. The 

accuracy of this approximation is a function of the sampling period T and the number N of 

samples used. 

The fast Fourier transform itself is not really a transform but rather an algorithm by 
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which the computation time needed to evaluate the discrete Fourier transform can be reduced. 

There are many algorithms for reducing the problem and all are generally based on the same 

idea. The fundamental idea is to recognize and utilize patterns of repeated numbers. Most 

simply, the Fast Fourier Transform is not a new transform but rather a more efficient method 

of computing the coefficients of the discrete Fourier transform where the end results in the 

frequency domain are the amplitudes of the individual sinusoids which make up the signal in 

the time domain. 

5.5 Results and Discussion 

The dynamic strain profiles obtained during the experiments were analyzed to study 

the wave velocity, dispersion, and attenuation of the propagating wave as well as its 

frequency components The results from the experiments are discussed in two subsections 

with the first dealing primarily with the short input pulse experiments and the second the 

longer input pulses which result in a ringing behavior 

5.5.1 Short input wave loading 

The arrival times of the strain pulses were obtained directly from the data acquisition 

system and plotted against the distance of propagation to compute the average pulse velocity. 

Figure 5.4 shows typical results from the short input pulse (120 and 150 usec for disks and 

spheres, respectively). The data shows that the average velocity for the spherical particles was 

600m/s while for the disks it was 930m/s. The experiment was repeated for input pulse 

durations of approximately 500 and 1200 usec and a plot of average wave velocity versus 

input pulse duration is shown in figure 5.5. The figure shows that the pulse velocities decrease 

by about 12% for disks and 16% for spheres as the input pulse duration is increased from 

about 120usec to 1200jasec Moreover, the spherical particles showed consistently about 35% 

slower pulse propagational velocity when compared to the disk chain for the various input 

pulse durations tested 

To explain this phenomena the following approximate theoretical development is used. 

The equation for the approximate wave velocity, V, in one dimensional granular media is 

given as (Takahashi, 1949) 
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V-d   — (5.9) 
\ m 

where d is the distance between the centers of two particles in contact, K is the effective 

contact stiffness, and m is the mass of a particle. For the cases studied, the distance between 

centers was kept constant (25.4mm), so this term does not contribute to the observed 

difference in velocities. The two remaining terms in the expression must then be the causal 

factors. The mass of the particles is easily measured or computed but the effective contact 

stiffness is not known quantitatively. 

Forming the ratio Vd/Vs and canceling the distance term yields 

V 
(5.10) 

\\K,m s      d 

where the subscripts d and s refer to the disk chain and the sphere chain, respectively. We can 

now consider the ratios of the effective contact stiffness and mass separately. The ratio mjmd 

reduces to (4 r)/(3 t) where r and t are the particle radius and the disk thickness, respectively. 

Using the measured quantities for these constants yields a value of approximately 8/3 for the 

mass ratio. 

Utilizing equations from Johnson, 1985, to compute the mutual approach of two 

distant points in contacting solids, one can calculate the load versus relative displacement for 

static compression of disks and spheres. Figure 5.6 shows such a plot for a sphere and a disk 

(the disk is considered under plane stress) for various compressional loads The calculated 

values are shown as symbols and the curves were fit with a power law expression 

P = K^6" (5.11) 

Proceeding to define stiffness as the slope of the curves, one can plot the stiffness ratio versus 

load which is shown as figure 5.7. The average value of the ratio is approximately 1.1. 

Substituting this into equation (5.10) yields Vd /Vs = 1.7. This value compares well with the 

117 



experimentally obtained Vd /Vs = 1.6. The difference in the values could be partly attributed 

to the static equations (Johnson 1985)being used to explain the dynamic phenomenon. 

Figures 5.8 and 5.9 show the strain gage output as a function of time from the 

instrumented disks and spheres, respectively. The strain pulses are the result of an initial input 

pulse duration of 120 usec for the disks and 150 usec for the spheres. For the disks, the pulse 

propagates down the assembly without significant dispersion. In the assembly of spheres, 

however, the pulse undergoes approximately a 30% increase in pulse length. This is further 

illustrated by figure 5.10 where the pulse length is plotted as a function of distance 

propagated for both the spheres and disks. This figure shows that while the pulse length does 

elongate in the assembly of disks, the increase is only 8% over approximately 80 particles 

while the assembly of spheres shows a 30% increase in pulse length over approximately 60 

particles. 

One possible explanation for the dispersion of the pulse in spherical particles is the fact 

that the spheres do not represent as good a wave guide as do the disks. In the thickness 

dimension, the disks are quite narrow with smooth parallel surfaces which provide a good 

surface for wave reflection. The parallel surfaces act as an excellent wave guide with a 

constant angle of incidence. The sphere on the other hand offers the impinging wave an 

expanding medium first, and second, a converging medium with rapidly changing angle of 

incidence. Near the sphere to sphere contact patch, opposite the incoming wave, the angle of 

incidence is approaching 90°. For all directions in spherical particles this condition exists 

while in disks this condition is only present in one dimension. 

The peak contact loads were determined for the instrumented particles as per the 

methods described earlier and these values were normalized by the maximum value. Figure 

5.11 shows the normalized contact load as a function of distance propagated for the short 

input pulses. The plot shows that by the fifth particle the load has dropped by 20% in the disk 

assembly and by more than 60% in the spheres. Previous work using assemblies of elliptical 

disks (Shukla et al., 1993b) has shown that the larger the contact stiffness, the higher the 

contact load attenuation rate. Also, the more massive the particle, the higher the attenuation 

rate. The initial drop occurring in the first five particles is more severe for the sphere chain 

when compared to the drop occurring in the disk chain. This effect could be attributed to the 

three dimensional nature of the spherical particles where higher order modes of vibration can 
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occur. Previous work has shown that the wave begins to take its characteristic shape after 

propagating through approximately 4-5 particles. The attenuation as a function of distance 

propagated becomes more gradual after the first five particles with the sphere chain showing 

greater over all attenuation. 

5.5.2 Long input wave loading 

A series of experiments were conducted where the input pulse lengths were elongated. 

Figures 5.12 and 5.13 show the strain gage data obtained from a chain of disks subject to an 

initial pulse length of 490 usec and a chain of spheres subject to an initial pulse length of 480 

usec, respectively. Both figures illustrate a ringing behavior that tends to separate the single 

long input pulse into pulses of shorter duration. This shorter wave length corresponds to the 

characteristic wave length observed in the short input pulse experiments which propagated 

relatively undisturbed. 

Figure 5.12 shows that the magnitude of the peak strain in the disk assembly first 

increases as the pulse propagates down the chain and then decreases. For the sphere assembly, 

figure 5.13, the 480 usec input pulse shows that the peak strain does not first increase before 

decreasing. Rather, the peak strain follows the same trend seen for the shorter input pulse 

durations. This may be explained by the fact that the attenuation rate in an assembly of 

spheres has been shown to be more severe than it is in an assembly of disks. The leading pulse 

does not initially gather sufficient energy to overcome the effect of amplitude attenuation. 

When the input pulse duration is increased to about 1330 usec for disks and 1190 

usec for spheres, an increase in the peak strain value occurs in both assemblies (see figures 

5.14 and 5.15). Also, as seen in the disk assembly subject to an input pulse length of 490 

usec, the peak magnitude of the leading pulse is not the largest magnitude of all of the pulses 

and therefore does not reflect the maximum contact load. The peak contact load corresponds 

to the pulse with the largest strain magnitude and the pulse with the maximum strain value 

changes with distance propagated. This is most evident in figure 5.14 (the disk assembly) 

where the maximum strain in disk 15 occurs in the third pulse and shifts to the first pulse 

between disks 15 and 40. There is also an increase in peak amplitude. 

This shifting is evident in the strain plots for the assembly of spheres also but it is not 

as obvious. The reader is directed to the strain profile for sphere 20 in figure 5.15 where the 
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leading pulse is just forming and the second pulse has the largest magnitude. By the time the 

pulse reaches sphere 30, the leading pulse has the largest amplitude. Careful observation of 

the wave propagation phenomenon in these experiments shows that the longer the input load 

duration the longer the time required to separate into wavelets. 

Figure 5.16 shows the normalized peak contact load as a function of distance 

propagated. The contact load was generated from the maximum value of strain occurring in 

each disk/sphere regardless of whether or not the maximum occurred in the leading pulse or 

a following pulse. The most significant increase in contact load appears in the disk chain when 

the input pulse duration was 1330 usec. An increase of approximately 75% in the maximum 

contact load is shown. The assembly of spheres also shows an increase in contact load for the 

longest input pulse duration (1190 usec) but the increase is only about 25%. This is the result 

of a redistribution of energy in the chain. The redistribution is in the breaking up of the main 

pulse into the smaller pulses. As the main pulse breaks up into wavelets that are of shorter 

duration there is a subsequent rise in magnitude of the wavelets corresponding to the 

shortening of the pulse length. 

5.5.3 Theoretical Description of the Ringing Behavior 

The granular medium acts as a nonlinear wave guide, and local microstructure and 

contact nonlinearity will allow input signals of sufficiently long wavelength to excite resonant 

sub-units of the medium to produce this observed ringing separation. Nesterenko (1983) 

suggested that compression pulses in granular media are dominated by soliton dynamics. He 

found that an initial compressional pulse soon broke up into a series of soliton modes, each 

propagating with unique amplitude and velocity, and such a system model could be 

approximated by a nonlinear wave equation similar to the well-known Korteweg-de Vries 

equation. The velocity of a soliton is dependant upon, among other things, the amplitude of 

the wave. The soliton with higher amplitude travels slightly faster than that with lower 

amplitude. This would explain why after some time, the largest amplitude peaks forming in 

the middle of the original pulse shift so that the leading pulse shows the largest amplitude. 

To expound on the ringing behavior in detail, an analysis is performed following the 

procedure developed by Nesterenko (1983). The analysis evaluates the characteristic 

wavelength which could be supported in single chain assemblies of disks and spheres. The 
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analysis also uses a simplified version of contact law proposed by Sadd el al., (1993). This 

contact law can be expressed as 

F.= < (5.12) 

The coefficients in the contact law, a and p, can be determined by matching the results from 

a discrete element numerical code with a dynamic calibration experiment performed in our 

laboratory. These values are a=0.58xl08 Nm"1'24, p=1.24 for the disks and a=3xl08 Nm"' \ 

p=1.5 for the spheres. The equation of motion for the rth disk can be written as 

m w. = a ( «., - w.y - a (w. - ui+J (5 13) 

where Uj is the displacement of the rth disk, m is the disk mass, and a is the loading coefficient 

in the contact law. 

Using 6U+I = Uj - Uj+1 to denote the deformation between the rth and (/+ /)th disks, the 

equation of motion becomes 

mh..+. = a.(bp..   - 2hp... + 6P , . ,) (5 14) 

In order to apply this equation to investigate the ringing behavior, consider small 

deformations of the granular system measured from a uniform initial compressive deformation 

ö0 >0. Thus for each pair of disks, §+1 = £ + $, , with^', ^6 . Substituting this into 

equation (5.14) 

C  = —(*M,-2<I+1 
+ <u+2) (5.15) m 

where 

*o = P«{UP)^1/P (5.16) 
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where the higher order terms of Ö'u+1 /ö0 have been dropped, and Faverage = aö/ being the 

average value of normal contact force during the wave propagation. The above equation can 

be rewritten as 

K, 
5'(x,/) = — (ö'(x-</,/)-26/(x,/)+6/(x + rf,0) 

m 
(5.17) 

Looking for a harmonic traveling wave solution, let ö(x,t) = A0 sin(kx-tot), and 

substituting this into equation (5.16) yields the frequency equation 

co = 2 
Kn 

sin 
m 

' k£ (5.18) 

where k is the wave number. For disk chains, the characteristic wavelength obtained in the 

experiments for the ringing behavior was approximately 4.4 disk diameters Thus the wave 

number becomes k = 2rc/4.4d and according to equation (5.18), this wavelength gives a 

frequency 

co = 2 
\ 

Kn ( 
sin 

m [4A) 
(519) 

The average contact load was found to be Faverage = 480 N from the experiments 

Substituting Favcrage, p and a into equation (5.19) gives a time period of 106 usec This 

compares favorably with the experimentally obtained value of 120 usec 

For the sphere chain, experimental results show that the average characteristic 

wavelength is approximately 4 sphere diameters, and this wavelength gives a frequency 

O)   = 

\ 

2Kn 

m 
(5.20) 

Following the same procedure as for the disk case, and load using the experimentally found 

Faverage = 440 K the characteristic time period was obtained to be approximately 198 psec 
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The experimental results show that the sphere chain can support the characteristic pulse 

duration in the range of 150usec to 200usec. 

5.5.4 Fast Fourier Transform Analysis 

The strain pulses which exhibited ringing (the medium and long input pulse lengths) 

were also analyzed using the Fast Fourier Transform technique. Figure 5.17 shows the power 

spectral density as a function of frequency for the 480 usec input pulse as it propagates in a 

chain of spheres. The plot shows that above approximately 15-20 kHz, there is no significant 

energy when compared to the energy contained within the lower frequencies. The magnitude 

of the frequency components in the 0-2.5 kHz range is quite large and the same basic shape 

appears in each of the transformed strain pulses. This basic phenomena occurred in all 

transformed strain pulses regardless of the length of the input pulse or the particle type (disks 

or spheres). The more interesting information is found in the frequency range between 2.5-15 

kHz. Further plots will omit the frequency components that are less than 2.5 kHz for clarity. 

Figure 5.18 shows the evolution of high frequency energy build up in the 7.5-12.5 kHz 

range for an input pulse length of 490 usec in a chain of disks Before the pulse breaks up 

(before the strain pulse reaches disk 30), the energy is all contained in the low frequency 

components. Once the pulse breaks up, the energy associated with the frequency components 

in the 7.5-12.5 kHz range begins to build. Disk 30 shows a build up in the 10-12.5 kHz range 

and then the frequency components of the FFT shift from the 10-12 5 kHz range down to 

approximately 9.5 kHz and the magnitude increases by around 60% by the 70th disk. This 

increase corresponds to the increase in peak strain for the pulse as seen in the strain versus 

time plots. 

Similar behavior is exhibited by the chain of spheres when subject to an input pulse 

of 480 usec. The FFT of the strain pulses (figure 5.19) shows that initially the energy is 

contained in the frequency range between 0-2.5 kHz but by the time the pulse has reached the 

30th sphere the energy around the 5 kHz range has increased However, unlike the disks 

where the energy build up was seen in the 7 5-10 kHz range, the spheres exhibit the build up 

of energy in the 2.5-7.5 kHz range. 

When we consider the FFT plots for the long input pulses, the build up of energy 

occurs around 12.5 kHz for the disk chain and 5-7.5 kHz for the sphere chain. The plots are 
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shown as figures 5.20 and 5.21 for the disk chain subject to an input pulse of 1330 usec and 

a sphere chain subject to an input pulse of 1190 usec, respectively These FFT plots clearly 

show that the energy associated with particular frequency components changes during the 

experiments with a clear shift into the higher frequencies and thus lower characteristic 

wavelength. 

At this time a point should be made about the resolution capability of the Fast Fourier 

Transform with respect to the data presented. The frequency resolution, f^, of the algorithm 

is dependant upon both the sampling period, T, and the number, N, of samples taken. Given 

in equation form 

-/mm N T (5.21) 

The sampling period for the data presented was 1 usec per point and the number of data 

points varied between 1000 and 2000 yielding frequency resolution of approximately 500 and 

1000 Hz for the medium length and long length input pulses, respectively. 

FFT results show that the pulse breakup was associated with the energy shifting from 

low frequency to high frequency. For sphere chain, the energy bu.lt up in 2.5-7.5 kHz range 

when pulse broke up. On the other hand, the energy build up in the range of 7.5-10 kHz for 

disk chain. 

5.6 Conclusions 

Experiments have shown that single chain assemblies of disks yield higher average 

wave velocities (approximately 35%) than similar chains of spherical particles. This result was 

shown to be independent of input pulse length A simple approximation for average wave 

velocity showed that while the velocity was dependant upon the ratio of the effective particle 

stiffness and the ratio of the particle masses, the mass rat.o is the dominant and controlling 

factor. As a result, the velocity was always higher in assemblies of disks because of the lower 

particle mass 

While the assembly of disks consistently showed an average wave velocity greater 

than the assembly of spheres, both assemblies showed similar behavior with increasing input 

pulse length. Increasing the input pulse length resulted in a decrease in average wave velocity 
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of approximately 12% for the disks and 16% for the spheres. 

Even though the velocity characteristics were similar for both types of particles, the 

dispersion characteristics of a short duration (120-150 usec) input pulse were dramatically 

different. The chain of disks showed virtually no dispersion (8%) after having traveled 

through eighty particles while the chain of spheres showed 30% dispersion after only sixty 

particles. This difference in dispersive behavior has been attributed to the three dimensional 

nature of the spheres which results in more multiple internal reflections of the stress wave. In 

contrast, the disks are two dimensional in shape with flat parallel sides which results in less 

reflective losses. 

The results have also shown contact load attenuation differences between disks and 

spheres. The initial drop in peak contact load between the first and fifth particle for the disk 

chain was approximately 20% while the sphere chain suffered approximately 60% attenuation 

for the same distance. After about 30 particles, both assemblies show approximately the same 

attenuation rate with the disk chain suffering approximately 80% overall attenuation and the 

sphere chain about 90% after traversing 70 particles. The dramatic difference in the initial 

attenuation was attributed mainly to higher order vibrations and the three dimensional nature 

of the spheres. 

It has been shown that there is a characteristic pulse which will propagate relatively 

undisturbed through a single chain of acrylic disks (approximately 120 usec in duration) 

Acrylic spherical particles showed the same basic phenomena qualitatively, however the pulse 

suffered dispersion The result is that a single characteristic pulse could not be defined for the 

sphere chain, but rather this case will support a pulse duration between approximately 150 

usec and 200 usec If the input pulse is sufficiently longer than this characteristic length, the 

pulse undergoes a ringing process which breaks it up into smaller pulses of the characteristic 

length. The larger the input pulse is with respect to the characteristic pulse length, the longer 

the break up takes. 

Lastly, the Fast Fourier Transform analysis of the longer input pulses demonstrated 

a shifting of the energy associated with the propagating pulse. The initial low frequency 

dominated pulses shifted energy into the higher frequencies and this shifting corresponded to 

the break up of the initial input into wavelets of the characteristic length 
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Figure 5.2. The coordinate system for two bodies in contact 
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CHAPTER 6 

PRELIMINARY STUDY OF THE EFFECT OF CEMENTATION ON 

THE DYNAMIC LOAD TRANSFER PHENOMENON 

6.1 Summary 

The effect of interparticle cementation on dynamic load transfer in granular materials 

was studied utilizing dynamic photoelasticity in conjunction with high speed photography. 

Granular assemblies were constructed with cements of various stiffness and circular disks of 

Homalite-100, a photoelastic polymer. The cementation was placed between individual 

particles with varying widths and thicknesses. The cemented assemblies were loaded 

dynamically by means of a small amount of explosive which produced a compressive stress 

wave. The wave propagated down the assembly and the load transfer as well as the stress field 

in the cemented particles was captured. Static results, which were confirmed in the dynamic 

regime as well, indicate that the cement produces different effects on the stress field in the 

particle depending on the relative stiffness of the cement when compared with that of the 

particle. Specifically, a stiff cement produces high stress around the edges of the cement 

region while soft cement produces the highest stresses at the center of the cement region. 

Additionally, for dynamic wave propagation, stiff cements result in higher average wave 

speeds while soft cements produce dramatically slower wave speeds In both cases, stiff and 

soft cement, there was significant wave reflection at the interface between the cement and the 

particle  primarily  due  to  the  acoustic  impedance  mismatch.   Additional  preliminary 

experimentation was conducted to investigate the load transfer behavior through angled 

cemented contacts Specifically, load transfer through single chains of particles where each 

successive particle in the chain alternated between ±15° or ±40° from the vertical. An 

experiment was conducted where a chain of particles was cemented at 90° from the vertical 

to determine if, unlike uncemented chains, the stress wave would propagate across the 

perpendicular contact. The expenments showed that due to the cementation, the wave would 

propagate across the perpendicular contact. Initially, static experimentation was conducted 

to characterize the nature of the stress field and a combined experimental/numerical analysis 

scheme was developed. The scheme allows the extraction of contact load from photoelastic 
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images of the cemented disks. 

6.2 Introduction 

This chapter represents a preliminary attempt at studying the effect of cementation on 

the wave propagation phenomenon. Dynamic wave propagation has been studied in recent 

years for its importance in such diverse applications as dynamic compaction of powders, 

shock forming of modern composites, and in various shock absorbing and isolating 

applications. These studies have primarily looked at the particle to particle interaction of dry 

contacts. While this may apply to the fore-mentioned applications, the study of seismic 

phenomenon needs to account for other parameters. One of these parameters is cementation 

between particles. 

In the past, researchers have studied many aspects of load transfer in granular 

materials (see, e.g., Proceedings of U.S.-Japan Seminar, 1988, Proceedings of IUTAM, 1982, 

Deformation and Failure of Granular Materials, 1982, and Micromechanics and 

Inhomogeneity, 1989). These studies have concentrated on the behavior of cohesionless 

particles with particular emphasis on macroscopic response. Few studies have been conducted 

to investigate the behavior of granular materials at particulate levels (see, e.g., Oda, et al., 

1980, Shukla and Rossmanith, 1982, and Zhu, et al., 1991). When experimentally modeling 

granular media to study the contact mechanics at the particle level, it is common practice to 

model the particles as disks. Shukla and Nigam (1985) have shown that when analyzing 

assemblies of disks with dry contacts, the disk-to-disk contact stress distribution is quite 

similar to Hertzian theory and a least squares Newton-Raphson scheme can be used to extract 

the contact load from the photoelastic fringes. This type of assembly, however, does not 

always adequately describe that encountered in nature. Geological formations commonly 

contain some type of cementation between the particles that make up the aggregate. Thus if 

the study of the particle-to-particle interactions is to be applied to geological phenomena, 

attempts should be made to realistically simulate this media. For these reasons, the effects of 

cementation on the particle-to-particle interaction has been studied. 

Trent (1989) and Trent and Margolin (1992) investigated, numerically, the behavior 

of cemented granular materials under both low-strain and high-strain loads and showed that 

the effective properties of the specimens were governed by the inter-granular bond properties 
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and distribution. Later work has shown that the stress distribution between cemented particles 

in contact does not resemble a Hertz stress distribution (Dvorkin, et al., 1991), as it would 

for particles without any cementation. The distribution is actually related to the ratio of the 

stiffness of the cement to the stiffness of the particle. Stiffer cements result in higher stresses 

at the edges of the cement region while softer cements have higher stresses at the center of 

the bonded region. Such changes in the stress field have been experimentally verified. Also, 

a numerical scheme has been developed which combines the theory and the experiments to 

compute the complete stress field around cemented contacts for normal loading. 

6.3 Numerical Analysis 

A combined experimental/numerical technique was developed to obtain the complete 

stress field distribution and the normal loads in cemented granular materials simulated by 

circular disks. The technique was motivated by the shapes of the stress profiles obtained by 

using a theoretical model (Dvorkin, et al., 1991). A brief description of this theoretical model 

and the development of the hybrid experimental/numerical scheme is given below. 

For the plane case, the cement layer between two deformable disks is approximated 

by an elastic foundation, where the contact region has been assumed to be small compared 

to the disk so that the stress distribution in the disk is close to that of a half-plane. 

Normal displacements of the disk surface, v(x), are related to normal stress, p(x), as 

(Johnson, 1985) 

v(x) = -——-   lp(s)\n\x - s\ ds + const , (6.1) 

where v is the disk's Poisson's ratio, G is the shear modulus, and x is a coordinate along the 

contact interface 

The displacement of the center of the disk relative to the median plane of the cement 

layer, 6, can be related to the displacements of the surface of the cement layer, V, and of the 

surface of the disk, v, as 

ö = v(x) - V{x) . (6.2) 
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It was shown in Dvorkin, et al. (1991) that a thin cement layer can be accurately 

approximated as an elastic foundation and therefore normal stresses, p, acting on the surface 

of the disk are related to the displacements of the surface of the cement, V, as 

, ,         2 Gfi  ~ vc) V(x) p(x) = -       v     /_A2 ^ (6 3) 
1  - 2 vc    h(x) v     J 

where Ga vc, and h are the shear modulus, Poisson's ratio, and half-thickness of the cement, 

respectively (Figure 6.1). 

Assuming that shear stresses at the disk surface do not significantly influence its 

normal deformation (Johnson, 1985), equations (6. l)-(6.3) can be combined into an integral 

equation : 

V(x) = T I —^-lnlx - s\ ds + const , 
h(s) 

(6.4) 

r = 2GC (i - vy - vc) 
TlG 1   -  2v 

The constant in the right hand side can be found using the condition of a given integral 

compressional force per unit length, F, of an elastic cylinder: 

F = -*;4-y m* (65) (1   - 2vJ   J h(s) 

Equation (6.4) can be solved using the quadrature method. 

Since the theoretical model requires the applied load to be known a priori, a method 

was sought which would extract the applied load from supplied experimental data. The 

combined experimental/numerical technique utilized the stress distribution profiles obtained 

using the theoretical method described above. It was assumed that stress distribution curves 

could be represented by a family of polynomials containing parameters that would provide the 

appropriate shape for given material parameters. Several distributions were used ranging from 

convex parabolic to concave parabolic. All these curves could be represented by the 
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polynomial 

yw>) = F 1  + (m ./±1 (6.6) 
a /  J 

where Fc is the force per unit length at the center of the cement region, m is the ratio of the 

central force to the force at the edge of the cement region, (j) is the angle which defines the 

position at which the stress is being applied, a is the angle which defines the edge of the 

cement region, and n is a fitting parameter. 

The hybrid scheme utilizes the distributed loading, f(4>), given by equation (6.6) 

combined with the experimental technique of photoelasticity through the governing stress- 

optic law. The resulting equations are solved using the Newton-Raphson procedure coupled 

with the non-linear least squares technique (Shukla and Nigam, 1985). 

Classic elasticity theory (Timoshenko and Goodier, 1970) gives the stress field for the 

plane problem of a disk loaded with a pair of equal and opposite edge forces, p, as depicted 

in Figure 6.2. The results are 

o   = 
2p 
71 

2p 
n 

sin^e^osfej      sin2(62)cos(e2) 
+ -£—cos(<t>) 

cos3(6,)      cos3(62 
+ -i—cos((b) , 

TlR 

(6.7) 

*>' 
sinfe^os^e,)       sin(62)cos2(e2) 

where the equation parameters are also given in Figure 6.2. 

Using superposition, the edge loading can be integrated to determine the interior stress 

for a distributed loading, f(<})) The results yield equation (6.8). 
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a   = .2/W>) 
71 

sin^jcosjÖ,)      sin2(02)cos(02) 

7t/? 

.W) 
TC 

cos3(6,)      cos3(62) 

'l ^2 

+ M>cos(<J))[/W<|) , 

(6.8) 

*y 
2A4>) 

71 

sinföjjcos^Ö,)      sin(02)cos2(62) 
■Rd$ 

Coupling these equations to the experimental data was accomplished through the use 

of the governing stress-optic law. The resulting equation is (6.9), where f0 is the material 

stress optic coefficient, N is the fringe order, and h is the material thickness. The maximum 

shear stress, xmax, can be computed from the photoelastic data and what remains is to solve 

for the parameters that define the force distribution, f((j)). 

N 

/ \ o — 0 
X y 

K 2 ) 
+   X 

xy 
Nfo_ 
2h 

(6.9) 

A number of data points obtained from the photographic images gave an over 

determined system of equations which were used to compute the appropriate values for Fc, 

m, and n. Here we used a set of correction factors for each of the parameters. The correction 

factors were used to improve the accuracy throughout the iterative process 

Equation (6.6) describes the force distribution at the face of the disk which was then 

integrated to find the total applied load: 
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a 
,/M + n 

2fAWd4> = 2FcaR^—j . (6.10) 
n + 1 

o 

Lastly, we used either the set of stresses acting on the face of a disk or an expression 

for the stress distribution on the face to numerically generate the set of corresponding fringes 

The disk was reduced to a grid of coordinate points and T,^ was computed for each point. 

Using equation (6.9) and the computed value of x^, all coordinate pairs that yielded an 

integer value of fringe order, N, were determined and plotted. 

6.4 Experimental Procedures 

The method of photoelasticity was used to obtain full field stress information in the 

particles. Specimens were loaded in static diametrical compression and photographs were 

taken of the resulting fringe patterns at various load levels. Disks were machined from PSM- 

1, a photoelastic material which becomes birefringent when stressed. To simulate stiff cements 

between the disks, aluminum and acrylic pieces were machined to match the disk radius. For 

a soft cement, urethane was cast between the disks. Disk diameters were machined to 76 mm 

to allow for clarity of the fringe patterns close to the contact region. Cement widths were 

16mm for the urethane and 18.5 mm for the aluminum and the acrylic. Figure 6.3 shows the 

specimen geometry used. Initially these experiments were conducted using Homalite-100 

disks with a diameter of 31.75 mm and a cyanoacrylate adhesive with a bond length of 3 mm 

The high fringe density near the contact region facilitated the change to the larger diameter 

disks. However, the data from these early experiments has been included in the results The 

Young's moduli and the Poisson's ratios for the disk material and the cements are listed in 

Table 6.1 

In the cases of the aluminum and the acrylic cements, the pieces were machined from 

stock material and then the machined pieces were bonded to the disks. The radius was 

carefully machined to match the disk radius and the bonding agent was Measurements 

Group's PMC-1 special purpose adhesive The adhesive is formulated for bonding complex 

photoelastic models and has an elastic modulus almost identical to that of PSM-1 (2 9 GPa 

for the adhesive and 2.6 GPa for the model material). 

In the early experiments, a drop of the cyanoacrylate based adhesive was placed 
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between the disks and allowed to cure overnight. The width of the cement was controlled by 

the size of the drop placed between the disks. The urethane cement was manufactured by 

Hexcel and was made by mixing a hardener and a resin. The disks were placed onto a plastic 

sheet and a mold cavity of the appropriate shape was formed between them. Liquid urethane 

was poured into the cavity and allowed to cure according to the manufacturer's instructions. 

As mentioned, the specimens were loaded statically and photographs were taken at 

various load levels. The loading took place on an Instron loading machine and the specimens 

were photographed through a light field circular polariscope. A loading frame was used to 

prevent buckling of the assembly during the loading. Notice in the photographs to follow that 

there are no fringes originating from the boundaries that would signify that the specimens 

were experiencing edge loading due to the presence of the fixture. 

Following the static experiments, dynamic experiments were begun where the 

cementation procedures followed those in the static case. The dynamic experiments were 

conducted for smaller particles and the cementation scaled accordingly. A single chain of 25 

mm diameter cemented particles was placed in the optical bench of the camera and an 

explosive charge was detonated to initiate the stress wave. The resulting twenty photographs 

of the propagating wave were analyzed to obtain average group wave velocity and pulse 

length. Both of which can be directly measured from the photographs. 

During the course of the experimentation, the cement stiffness was varied from very 

soft with respect to the disk material, to very stiff. Also, the width of the cement region was 

varied to a maximum of approximately one fourth the disk diameter. As with the static 

experiments, stiffness variations were accomplished by means of casting from a liquid resin, 

or machining from stock material and bonding. 

6.5 Results and Discussion 

6.5.1 Static Loading 

The theoretical model (Dvorkin, et al., 1991) gives the normal stresses on the face of 

a disk which were used to generate fringe patterns in it. Figure 6.4 shows the theoretical 

fringe patterns compared to the actual experimental photograph. The theoretical fringe 

patterns correspond to stresses that are slightly smaller than those found experimentally (10% 

difference). By increasing the theoretical input load by 10% we obtained a close match 
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between the theory and the experiment. The theoretical model was able to reconstruct the 

stresses in the disk reasonably well, however, the technique requires prior knowledge of the 

applied load. 

The combined experimental/numerical technique was used to compute the net contact 

load for a number of different types of cement. These loads are shown in Table 6.2 along with 

the experimental data. This table represents experiments covering a variety of cement/disk 

combinations with stiffness ratios ranging from 0.001 (urethane cement) to 20 (aluminum 

cement). Comparison with the measured values shows that in all cases the relative error was 

less than 10% . The computed value for the contact load was practically insensitive to the 

fitting parameter, n. The fitting parameter was actually more critical to the resulting fringe 

pattern produced. For this reason, n was fixed as an input value and the computer program 

found Fc and m. Once these parameters were determined, n was iterated from the fringe 

pattern produced by the computed data. It was found that a good starting point was n=4. 

After allowing the code to solve for Fc and m, the resulting fringe pattern was generated and 

compared to the experimental photograph and n was adjusted if necessary. 

Figure 6.5 shows a plot of the normalized force along the cement/disk interface as 

predicted by the theoretical model, for the case shown in Figure 6.4, using the experimental 

load value and the approximation for the actual experimental load, and for one increased by 

10%. The results from the combined experimental/numerical approximation are also shown 

(solid line). The figure shows good agreement for more than 60% of the contact region and 

although the plots deviate toward the outer edge of the cement region, integration of the 

curves reveals that the net loads predicted by both schemes differ by less than 5%. 

The iteration scheme for determining the parameter n involved plotting the fringe 

pattern resulting from the computer generated solution using values of Fc, m and the input 

value of n. If the pattern did not match the experimental photograph, n was changed slightly 

and the fringes were generated again. This iterative scheme is nothing more than slightly 

modifying the computer simulated applied load If Fc and m are held constant and n is changed 

in the fringe generation program, the result is that the area under the force distribution curve 

is changed. By increasing n, the net load is decreased, and by decreasing n, the net load is 

increased. Figure 6.6 shows this as a plot of normalized force distribution along the cement 

for various values of n. So, after looking at the first estimate of fringes, one can determine 

145 



whether the net load needs to be adjusted slightly upward or downward. 

Figure 6.7 shows the case where the cement material was acrylic. The stiffness ratio 

(Ecetnen/Edisk) between the cement and the disk in this case is about 1.4. The figure shows the 

first iteration for n=3. One can easily see that the computer generated fringes represent a load 

that is slightly lower than the fringes in the experimental photograph represent. The 

parameters were used in equation (6.10) and the computed loads are also shown in the figure. 

The first iteration of load produced a value of 585 N which did not match the experimental 

photograph. The value of n was changed to 4 and the fringes were regenerated. This 

produced a net load of 513 N and the fringe pattern matched quite well. The next iteration 

shows the fringe pattern for n=4.5. This is clearly an underestimate of n because the tmax 

fringes are not of high enough order when compared to the experiment. 

Figure 6.8 shows the experimentally obtained photoelastic fringes for the case where 

aluminum was used as the cement material, along with the fringes obtained by utilizing the 

computer algorithm. The fringe patterns match reasonably well at n=4. In this case, the 

stiffness ratio between the cement and the disk material is approximately 25. Note that this 

is the same case as that shown in Figure 6.4 where the experimental photograph was 

compared to the results from the theoretical model. 

6.5.2 Dynamic Loading 

Figure. 6.9 shows typical photographs of two different 25 mm diameter cemented disk 

chains as the dynamic wave propagates The photographs show that there is a considerable 

amount of energy reflected at each of the contacts due to the acoustic impedance mismatch 

between the disk material and the cement material. Figure 6 9 a.) shows the case of an 

aluminum cement while 6 9 b.) represents the other extreme with a urethane cement. The 

group wave velocity was determined by measuring the position of the wave front at various 

times and plotting the distance propagated versus time. For the two cases shown in Figure 

6.9, the velocities were found to be approximately 1600 and 300 m/s, respectively. 

Figure 6.10 shows the plot for a number of nearly identical single chain experiments 

of cemented particles with a small amount of cyanoacrylate adhesive. The average velocity 

for these cases was determined to be 1240 m/s This is higher than the reported velocity for 

a single chain of particles without cementation by approximately 20%. The velocity for 
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particles without cementation was found to be 1050 m/s. 

The effect of cement width with respect to the particle diameter was investigated for 

two different cements and it was discovered that as the cement width increases, the group 

wave velocity also increases. Figure 6.11 shows a plot of normalized group wave velocity as 

a function of cement width. The plot shows that the velocity increase appears asymptotic to 

about 75 percent of the P-wave velocity in continuous Homalite-100. Cement width was 

varied from zero to approximately 0.35 times the disk diameter. 

Experiments were also conducted with the particles staggered from the vertical, by 

some angle, a. Figure 6 12 shows the particle arrangement for the staggered configuration. 

To date, only two different angles, a = 15° and a = 40°, have been used in the experiments. 

Figures 6.13 and 6.14 show the typical isochromatic fringes obtained using these particle 

arrangements. The cement used was a cyanoacrylate based adhesive with a fixed width of 

approximately 0.13 times the disk diameter. 

The wave speeds have been determined and are shown in Figure 6.15. These velocity 

measurements represent the vertical velocity of the wave front as it propagates in the chain. 

Since the data only represents a few experiments, the reported velocities are still considered 

estimates. The trend however would lead one to believe that the greater the angle, the lower 

the wave velocity It is difficult to discuss pulse length in terms of particle diameters but it is 

easy to see that the pulse is loading approximately 6 particles in Figure 6.13, the 15° angle 

case, and 5 particles in Figure 6.14, the 40° angle case. 

Notice that there was energy still propagating in the particles (this is most noticeable 

for the 40° angle case) after the main pulse had passed. This energy is due to reflections 

taking place in the particles and presumably would lead to greater attenuation of the pulse. 

Evidence of this can be seen in Figure 6 14. The magnitude of the fringe orders seen in the 

photographs decreases dramatically as the loading pulse travels down the chain. As complete 

confidence in the current analysis technique for dynamic analysis has not yet been established, 

no load data will be presented at this time 

Another set of experiments, still in the preliminary stages, is the investigation of stress 

wave propagation at angles of 90° and greater from the incident wave direction. The particles 

in these experiments were cemented together. Figure 6.16 shows typical isochromatic fringes 

from such an experiment. Note that in previous work from this laboratory (Shukla et. al., 
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1988) the wave would not propagate at angles of 90° or greater using uncemented particles. 

Figure 6.16 shows that energy does indeed transfer to the particle chain that is at a 

right angle to the incident pulse. A careful look at these photographs reveals that damage 

growth has begun in the first disk in the right angle chain. The stress on the contact is almost 

entirely shear stress and the damage originates at the edge of the cementation zone. The 

origin of the damage coincides well with the numerical predictions made by Dvorkin (1991) 

with regard to the maximum stress location for a cemented contact. 

Velocity measurements were also made for the pulse propagating in the near vertical 

straight chain and it was found that the ratio of cementation width to particle radius, w/r, also 

has an effect on the velocity of the pulse. The velocity was found to be higher in this straight 

chain (w/r = 0.12), approximately 1330 m/sec, than that of the previous straight chain (w/r 

= 0.10), 1240 m/sec. The difference between the two chains was that the ratio, w/r, was 

higher in the chain with the higher velocity. Further experimentation will be done to explore 

this phenomenon. 

6.6 Conclusion 

A hybrid experimental/numerical scheme has been developed to compute the complete 

stress field within cemented particles subject to normal loads. The method combines a 

theoretical solution of the problem with the experimental technique of photoelasticity. The 

resulting over-determined set of equations are solved using the Newton-Raphson method and 

non-linear least squares techniques. In the analysis, the stress distribution between the center 

and the edge of the cement bond is approximated with a power law equation. Excellent 

agreement, within 10%, between the experimental and computed contact loads has been 

shown. In addition to the contact load, the entire stress field in the particle can also be 

reproduced with reasonable accuracy. 

The results of this investigation have shown that contact stresses and contact loads 

for a disk under diametric compression with cementation present at the contact can be 

determined from either an a priori knowledge of the net confining load or simply the 

photoelastic fringes As yet this does not hold true for the dynamic regime The nature of the 

stress field around the cement region qualitatively matches that seen in the static regime. 

However, the whole stress field in the particle is not so easily described and therefore, the 
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coupling of the photoelastic fringes to the stress field equations through the stress optic law 

is less than perfect. The combined experimental/numerical computer algorithm helps 

determine the net confining load for either the case where the cement was stiff compared to 

the disk material or where the cement was much softer than the disk material. The theoretical 

stress distribution reproduces the experimental fringe contours with high accuracy. 

Cementation proved to have an impact on the nature of wave propagation 

phenomenon. The velocity of the group wave as compared to uncemented contacts increased 

by approximately 20%, for vertical chains of particles. The effect seen on the group wave 

velocity would seem to be consistent with the physical changes made to the medium. The 

cementation is bringing the particulate medium closer to a continuous medium and the wave 

velocity is increasing accordingly. 

The change in the pulse length, when compared to uncemented particles, needs to be 

explored further. Long chain experiments with strain gages will be conducted to determine 

the entire effect. 

The effect of contact angle, while not complete, would seem to indicate that the angle 

affects the velocity, the pulse length, and the load attenuation. One possible explanation for 

the changes to the velocity and attenuation is that the pulse undergoes more scattering and 

dispersion upon encountering particle boundaries. 
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Table 6.1 Material properties for the disk and the cements. 

PSM-1 (disk) Aluminum Acrylic Urethane 

Young's 
Modulus 

(GPa) 

2.6 72.0 2.8 3.0 

Poisson's 
Ratio 

0.38 0.33 0.38 0.46 

Table 6.2. Comparison of the experimental and numerical determinations of contact load. 

Experimental and Numerical Load Determination for Various Cement Types 

Urethane Super Glue Acrylic Aluminum 

Exp 
(N) 

Num 
(N) 

Err 

(%) 

Exp 
(N) 

Num 
(N) 

Err 
(%) 

Exp 
(N) 

Num 
(N) 

Err 

(%) 

Exp 
(N) 

Num 
(N) 

Err 

(%) 

200 192 4.0 267 268 0.3 91 97 6.0 95 100 4.3 

222 217 2.4 690 642 7.0 134 138 3.0 191 204 6.5 

1291 1293 0.2 181 191 5.1 270 293 8.5 

1389 1387 0.1 225 221 1.7 357 380 6.6 

1772 1811 2.2 270 280 3.6 447 481 7.5 

1905 1968 3.3 314 332 6.0 537 573 6.6 

2226 2367 6.3 359 378 5.3 629 646 2.8 

407 422 3.8 722 751 4. 1 

448 453 1.2 812 855 5.4 
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1  V(x) 

median 
plane 

•H   a 
Figure 6.1. Geometry for theoretical analysis. 

Distributed   Load 

Figure 6.2. Disk loaded with opposite edge forces showing variables used for 
analysis. 
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PSM-1    Disk 

Dimensions   (mm C 

Cement 
Type A B 2a 

Aluminum 76.1 2.3 18.5 

Acrylic 76.1 2.3 18.5 

Urethane 76.1 2.6 16 

Figure 6.3. Specimen geometry for the static diametral compression 
of disks with cement at the contact. 
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Figure 6.5. Edge predictions from the theoretical model and the combined 
experimental/numerical technique. 
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Figure 6.6. Normalized force versus position for various values of the 
parameter n. 
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Figure 6.10. Distance versus time plot for determination of group wave 
velocity. 
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Figure 6.11. Plot of normalized group wave velocity as a function of cement 
width 
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Explosive 
Holder 

Figure 6.12. Schematic of the disk chain used for the cemented, angled 
contact experiments. 

»APl/ISIW 

Figure 6.13 Typical isochromatic fringes obtained from a single, 15° angle 
chain of particles. 
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Figure 6.14. Typical isochromatic fringes obtained from a single, 40° angle 
chain of particles. 
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Figure 6.15. Distance versus time plot for determination of group wave 
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Figure 6.16. Typical isochromatic fringes obtained for two cemented disk 
chains showing energy transfer into the 90° chain. 
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CHAPTER 7 

THE EFFECT OF SATURATION AND PORE FLUID ON DYNAMIC 

WAVE PROPAGATION 

7.1 Summary 

A computational modeling scheme has been developed to study wave propgation 

through granular materials saturated with pore fluid. The scheme incorporates an interparticle 

contact law developed from a simplified elastohydrodynamic solution for two disks interacting 

through a viscous fluid. Studies to date have shown good correlation with average branch 

vector fabric measures in that higher wave speeds and less attenuation were found for wave 

propagation in preferred directions of high branch vector distribution. The results are also 

consistent with the well-known inverse relationship between wave speed and porosity. An 

experimental study has also been undertaken in which the effect of pore fluid has been 

investigated in assemblies of circular disks. The fluid saturation level ranged from fully 

saturated assemblies to just a small amount of fluid placed between the circular disks. The 

experimental data indicates that load attenuation through the saturated assemblies is higher 

than that in dry assemblies. Additionally, for partially saturated assemblies, the transfer of 

energy from the propagating wave to kinetic energy of the pore fluid has been shown to be 

quite significant. 

7.2.1 Introduction 

Due to the microscopic heterogeneity, wave propagation in porous and granular 

geomaterials is governed by complex micro-processes which offer considerable challenges in 

developing predictive models. The term microscopic is used here to apply to behaviors 

occuring at the scale of the heterogeneity; e.g. length scales of pore or particle size. The 

presence of fluid occupying a portion of the pore space within the solid fraction requires a 

modeling strategy which incorporates the coupled mechanical response between the pore fluid 

and solid skeleton. 

Classic continuum mechanics laws of elastodynmaics and their extensions including 

viscoelastic response have had limited success in predicting such wave propagation behavior. 
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One of the more successful continuum mechanics modeling schemes occured through the 

development of poroelasticity theory (see review by Detournay and Cheng, 1993). Based 

largely on the remarkable efforts of MA. Biot (fundamental papers reprinted in Tolstoy, 

1992), poroelasiticty theory is constructed on the concept of a coherent solid skeleton 

containing a fully connected, fluid filled pore space. Coupling between the fluid and solid 

phases is included, with the solid behavior governed by an elasticity theory and the fluid 

motion modeled through a diffusion (Darcy) equation. The definition of pore pressure places 

some restrictions on the time scale at which the coupled diffusion-deformation processes can 

be analyzed. This occurs because the pore pressure must be locally equilibrated between 

neighboring pores, and this length scale is linked to a time scale through the fluid diffusion 

behavior. Thus in principle, Biot theory is limited to quasi-static processes where the 

acceleration of the constituents is neglected. Bowen and Lockett, 1983 investigated this 

issue of neglecting the pore fluid inertia and found that for a specific problem under 

harmonically varying loading conditions, the solutions with and without inertia did not agree. 

In spite of this fact, Biot theory has been applied to dynamic problems involving wave 

propagation (Stoll, 1989) and predictions of the theory have been experimentally verified, e.g. 

Plona, 1980 and Ogushwitz, 1985. In a recent study, Gajo, 1995 investigated the role of 

viscous coupling between the solid and fluid phases of saturated porous media within the 

context of Biot theory for transient wave propagation. Hsieh and Yew, 1973 developed 

dynamic equations of fluid-saturated porous media by replacing the Biot mass-coupling 

theory with a constitutive assumption for the porosity change Katsube, 1985 also re- 

investigated Biot theory in order to develop a clearer understanding of the pore-fluid 

mechanics. In related work viewing geomaterials as multiphase, Vardoulakis and Beskos, 

1983 and Prevost, 1987 presented an approach to the dynamics of saturated porous and 

granular media using general mixture theory. It has been shown (Bowen, 1982) that under 

appropriate linearization conditions, mixture theory can be reduced to the poroelastic Biot 

model. 

Another interesting approach to the dynamic micromechanical behavior of saturated 

porous media is the so-called squirt-flow theory where pore fluid is rapidly squeezed out of 

the media pores deformed by the passing stress wave. This mechanism was initially developed 

by examing fluid flow in an individual crack pore (Mavko and Nur, 1979) or at a grain contact 
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point (Palmer and Traviolia, 1980). Within this approach, attenuation and wave velocities 

were calculated by considering viscous energy losses or through a complex modulus. Mavko 

and Nur, 1979 have shown that the squirt-flow theory predicts much higher and more realistic 

attenuation values in partially saturated rocks than predictions from Biot theory. These initial 

studies treated the squirt-flow mechanism independent of Biot's theory; however, recently 

Dvorkin and Nur, 1993 have combined these two behaviors into a single unified model. 

Applications by Dvorkin, et al., 1994, have shown that the combined Biot/Squirt (BISQ) 

model can relate compressional wave speed and attenuation to the elastic properties of the 

drained skeleton, porosity, permeability, saturation, fluid viscosity and a parameter called the 

squirt flow length. It is assumed in the model that the squirt flow length is a fundamental 

rock property independent of frequency, fluid viscosity or compressibility Results from the 

unified BISQ model indicate that the squirt-flow mechanisms dominate Biot mechanisms in 

predicting wave velocity dispersion and attenuation, and that BISQ predictions more 

accurately reflect observed dispersion and attenuation data. 

Another large body of research exists dealing with micromechanical modeling of 

granular materials from the paticulate mechanics point of view Many microstructural or 

fabric tensor theories have been proposed to model the static and dynamic behaviors of 

granular geomaterials; see for example Jenkins and Satake, 1983, Mehrabadi, 1992 and 

Voyiadjis, 1992. With regard to applications for wave propagation problems, Shukla, et al., 

1988, 1993, and Sadd, et al. 1993 have investigated the dynamic response of unsaturated 

paniculate materials. These studies have shown that from a micromechanical perspective, 

load is transferred in a dry granular medium primarily through contact mechanisms between 

neighboring particles. Furthermore, for the dynamic case it has been observed that the 

propagation of mechanical waves through such a medium occurs along complex networks of 

paths determined by the material's granular microstructure Thus, local microstructure or 

fabric plays an important role in the transmission of mechanical loadings through such 

materials, and the wave speed and amplitude attenuation are related to material fabric. 

The present work is concerned with the application of a numerical micro-mechanical 

modeling scheme to predict wave propagation in idealized granular materials saturated with 

pore fluid. The modeling uses the discrete element method to construct a numerical 

procedure to simulate dynamic load transfer associated with wave propagation processes. 
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This computational method was originally developed by Cundall, et.al. 1979, to model the 

response of discontinuous materials by studying the behavior of individual idealized particles 

in assembly systems. For applications to wave propagation, this scheme employs large 

assemblies of idealized particles to model the dynamic behavior of granular geomaterials. 

Numerous studies by Sadd, et.al. (1989, 1990 and 1993) have shown that such modeling 

techniques can simulate granular materials and predict results which compare with 

experimental data. The discrete element methodology commonly uses the simplfying 

assumption of Newtonian rigid-body dynamics to calculate the translational and rotational 

motion of each particle in model assemblies. Thus the dynamic response of the model system 

can be determined, and parameters such as wave speed and amplitude attenuation can be 

calculated for specific material models. Furthermore, these wave propagational 

characteristics can be related to the model material's microstructure or fabric. 

Proper modeling of the contact forces between adjacent particles is essentail for the 

correct application of this numerical technique. This local contact behavior can be thought 

of as the microscopic constitutive law for the material. In order to apply our previous 

discrete element modeling schemes, a new contact law has been developed for particles 

interacting with each other through a fluid. The presence of pore fluid can have significant 

effects on the dynamic response of granular materials by adding viscous forces on particles 

and by changing the contact response between adjacent particles through squeeze-film 

elastohydrodynamic action. 

Details of the development of the discrete element modeling scheme and 

elastohydrodynamic contact law will be presented. Model simulation results for one- and 

two-dimensional assemblies are given and compared with measured and expected behaviors. 

In order to help bridge the gap between our micromechanical modeling and macro 

observations, two-dimensional, meso-domain simulations are presented for assemblies with 

various fabric anisotropies. The term meso-domain is used here to indicate a model material 

composed of sufficiently large numbers of particles (micro-length scale units) such that 

average measures of fabric and mechanical behavior have reasonable meaning. 

7.2.2 The Discrete Element Method 

As mentioned, the discrete or distinct element method is a modeling strategy which 
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uses simplifying constitutive assumptions (commonly assuming Newtonian rigid-body 

mechanics) to model the translational and rotational motion of particles in model material 

assemblies (Figure 7.1). Contact laws between adjacent particles are constructed which serve 

to determine the contact force as a function of the relative displacement or relative velocity 

between the particles. Applying Newton's law to the i-th particle would yield 

n 

£ F(,ß + F® = m x 
i-  i 

(7.1) 
£ MM + M«> = /6 
*—' I     i 

J-- 1 

where 7*»> and M* are the j-contact forces and moments on the I-th particle, /*> and Ml) 

represent any resulting non-contact forces and moments, mx and /, are the particle mass and 

moment of inertia, and x% and Bt are the particle position and rotation.  Equations (7.1) would 

then yield the particle linear and angular accelerations with given contact and non-contact 

forces.   The technique establishes a discretized time stepping numerical routine, in which 

granule velocities and positions are obtained from numerical integration of the computed 

accelerations. New particle locations then establish new contact forces for the next time 

increment. It is assumed that during each time step, disturbances cannot propagate from any 

particle further than its immediate neighbors   Under these assumptions, the method becomes 

explicit, and therefore at any time increment the resultant forces (and thus the accelerations) 

on any particle are determined solely by its immediate neighbor interactions.    In wave 

propagation applications, the movements of the individual particles are a result of the 

propagation through the medium of disturbances onginating at particular input loading points. 

Consequently, wave speed and amplitude attenuation (intergranular contact force) will be 

functions of the physical properties of the discrete medium, i.e. the m.crostructure.  In order 

to model actual geomaterials, the method is typically applied to granular systems containing 

large numbers of .dealized particles (e.g. circular disks or spheres) in regular or random 

packing geometries   Such model materials can be computationally generated with varying 

degrees of microstructural fabric. 
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7.2.3 Fluid Contact Law 

As mentioned, the presence of pore-fluid will create several new forces at the 

paniculate level, and this requires the development of new contact laws governing particle 

interactions through a fluid. For fully saturated conditions, the capillary forces would vanish, 

whereas the viscous and squeeze-film contact lubrication actions would produce sizeable 

paniculate forces. Viscous effects would be predominant for large particle spacings where 

neighboring interaction forces are vanishingly small. On the other hand, squeeze-film contact 

forces would be the most significant for dense packings of paniculate systems, and this would 

seem to be the predominant case for most consolidated geomaterials. 

The contact force for such a problem can be modeled using the theory of 

elastohydrocfynamics (Cameron, 1967 and Gohar, 1988). Consider the case of two particles 

(approximated as two circular disks) embedded in a viscous fluid, and approaching each other 

with a relative normal velocity V(t), see Figure 7.2. The fluid film in the contact zone will be 

squeezed, and a sizeable pressure is thus built up in this contact region. The fluid pressure 

distribution in the gap will exert a loading on each particle surface, and this loading is 

sufficient in certain cases to produce significant particle deformation. In this fashion, the 

micro-contact law governing particle interactions for saturated granular materials involves the 

complication of coupling both fluid and solid behavior, and this creates significant differences 

from behaviors found in the dry case. Past studies of this elastohydrodynamic problem have 

been carried out by Christensen, 1961, Kerrebrugh, 1970 and Lee and Cheng, 1973. These 

studies have developed very elaborate and complicated solutions methods to determine the 

fluid pressures and deformation profiles between converging circular cylinders or disks. 

Solutions were commonly formulated as integral equations, and numerical evaluations 

normally used some type of iteration strategy 

The problem geometry is shown in Figure 7.2 where the distance between particle 

surfaces is denoted by h(x,t), a function of coordinate x and time /, and ö(x,t) is the particle 

deformation. Under certain assumptions the fluid pressure/?fx,/) can be related to h(x,t) by 

the Reynolds equation of lubrication theory 

dx       dx dt ^     > 
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where r\ is the viscosity of the fluid. 

Since hfx.t) can include particle deformation ö(x,t) which is determined by elasticity 

theory, equation (7.2) is a coupled relation, and as mentioned typically an iterative numerical 

method would be required to solve this equation for the pressure distribution p(x,t). 

Incorporating such a numerical scheme into the discrete element method would result in a 

very computationally intensive procedure, and would therefore result in unreasonable amounts 

of CPU time to run the simulations. Thus a simplified alternative procedure was developed 

in order to avoid the numerical complexities. This simplified approach first assumes that the 

particle is rigid, and this allows a closed-form solution forp(x,t) from equation (7.2). Once 

this pressure distribution is found, the particle deformation may be calculated from simple 

Hertz contact stress theory, and this new particle shape may be then used to calculate a new 

pressure distribution. Thus initially let w(x,t) = 0, and the undeformed particle surface can be 

approximated by the relation 

Kx,t) = h(0,t) + £_ n   . 

where R is the particle radius. The solution to the Reynolds equation (7-2) for this case is 

found to be 

p(x,t) =- 6RT)JM_ 
h\x,t) (74) 

With the pressure distribution known, the total contact load between the particles is given by 

integrating the pressure, i.e. F = H J pdx, where H is the disk thickness. Carrying out the 

integration over the disk surface yields 

F{t) = 3^/27X1]//       K   - 
U(0,/)J n0 (7.5) 

In order to included the effects of particle deformation, a combined model with two, 

series-connected stiffness (spring) elements may be used. One spring element represents the 

fluid stiffness while the other element includes the solid (particle) stiffness resulting from the 
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elastic deformation within the particle. The pressure loading will produce deformations such 

that the distance between particle surfaces will change from h to h(x,t) + ö(x,t), where ö(x,t) 

is the contact deformation for the dry case. If the disk shape is assumed to be unchanged, then 

the new load F(t) is still given by equation (7.5) using the modified value ofh(x,(), i.e. 

F(t) = 3finr\H R \ 3/2 

[h(o,o+b 
V{t) (7.6) 

In dry granular materials, our previous research (Sadd, et.al., 1993) has indicated that 

the normal contact force F can be related to contact deformation by the relation F = Kö M 

, where K is a material constant. Obviously the forces in the fluid and solid springs should 

be equal, and this leads to the result 

3v^ur|// R 
{h(0j)+bj 

3/2 

V{t) = Kb 1.5 
(7.7) 

where on the right-hand side, the exponent on 6 has been modified for convenience to the 

value of 1.5. Solving equation (7.7) for ö and substituting the result into equation (7.6) yields 

F(t) 
C, V{t) 

1     I 

0.5 
\       \ 

h(0j) 
N 

/, 2(0,/) ♦ 4(-iy 
K 

\ N3/2 

1 \2/3 
(7.8) 

where C, = 3/ 2t]7i;R3/2H. Equation (7.8) then gives the normal contact force when two disks 

approach to each other. For the case when the two particles move apart, contact law (7.8) 

is not suitable since a negative velocity V, may lead to a negative value within the square root 

For this case the solid contact law will be used. 

The above results address only the normal contact response between particles. For 

the tangential contact behavior, a simple modeling scheme (Adhakari, 1995) based upon the 

simple shearing of a Newtonian fluid within the small inter-particle gap. If the gap is small 

then the fluid motion may be approximated by a linearly varying distribution, and the resulting 

shear stress between a pair of particles will then be given by 
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where U is the relative tangential velocity between particles, and U, and U2 are the absolute 

tangential velocities of each particle. Thus the tangential force between any two generic 

particles can be estimated by the product of this shear stress times an effective area within the 

gap zone. However, as the particle spacing h, becomes very small (on the order of a 

micrometer), relation (7.9) breaks down and predicts unrealisticly high shear stresses. For 

this case it is well known that the no-slip condition of classical fluid mechanics should be 

modified to include a tangential slip velocity along neighboring particle surfaces. This will 

act to soften the unrealisticly high velocity gradient calculated in relation (7.9). It has been 

suggested that for very thin fluid gaps, the frictional characteristics of the lubricant are 

determined by the properties of the surface layers and the underlying solids. The viscosity of 

the lubricant has little effect, and thus a simple Coulomb frictional equation may be used with 

an appropriate value of the coefficient of dynamic sliding. Therefore when the spacing 

parameter h becomes less than or equal to a prescribed critical value hcr, the tangential force 

is given by F, = fiFn, where // is determined by requiring F, to be continuous at h = hcr. 

7.2.4 Results 

In order to investigate the predictions of the proposed modeling scheme, several one- 

and two-dimensional material models were created, and the discrete element computer code 

was then applied to each of these models under specific dynamic loading conditions designed 

to simulate wave propagation. 

7.2.4.1 One-Dimensional, Single Chain Simulations 

In order to gain an understanding of basic model predictions, numerical experiments 

have been conducted on one-dimensional granular material simulated by a single straight chain 

of circular particles as shown in Figure 7.3. Considering the modeling of a coarse sand, the 

circular particles had a diameter of 2mm, thickness of 1mm, and were assumed to be of quartz 

with a density of 2650 kg/m3. The simulations incorporated different interparticle gap 

openings (of the order of one micrometer) between neighboring particles, and the model 
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system was assumed to be completely saturated with water of viscosity of 0.001 N-s/m2. The 

input loading applied to one end of the particle chain was taken to be a triangular time 

dependent pulse of duration of 5 ^is with a peak value of 2 N to simulate a wave front 

pressure of approximately 106 N/m2. 

Using these parameters, a computer simulation was conducted and wave speed and 

attenuation results are shown in Figures 7.4, 7.5 and 7.6. The effects of the gap distance and 

pore fluid viscosity on the wave speed are shown in Figure 7.4. As expected, the wave speed 

decreases with the gap distance, and when the gap is small, these effects are rather 

pronounced. An increase of fluid viscosity leads to a slight increase of the wave speed, 

although these effects are small for the physical parameters in the chosen model. As pointed 

out by Dvorkin, 1994, increases in the compressional wave speed with increasing pore fluid 

viscosity have been observed, and unfortunately Biot theory predicts the opposite trend. 

Figures 7.5 and 7.6 illustrate amplitude behavior where amplitude is measured by the 

interparticle contact force normalized by the input value. It was found that the attenuation 

is quite large during the passage through the first several particles, but then the attenuation 

rate rapidly decreases with the propagational distance. Figure 7.5 showns the effect of the 

interparticle gap spacing on the attenuation , and it is seen that larger gap spacings produce 

higher attenuation. The effect of pore fluid viscosity on attenuation behavior is illustrated in 

Figure 7.6 for a fixed interparticle spacing of 0. l^m. Higher viscosities result in slightly 

higher attenuation rates. 

7.2.4.2 Two-Dimensional Simulations 

In order to investigate the use of the compuatational scheme for multi-dimensional 

simulation, several two-dimensional granular assembly models were generated. These 

assemblies were created using three different random media generators which have been 

previously developed by Tai, 1993. These generating codes can create large random 

particulate assemblies with varying degrees of microstructural fabric such as porosity, 

coordination number (average number of contacts per particle), particle contact normal and 

branch vector distributions, void characteristics, etc. Figure 7 7 illustrates some of these 

fabric variables for a general granular medium. The branch vector, defined as the vector 

drawn between adjacent particle mass centers, is a commonly used microstructural fabric 
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measure that relates the relative positions between particles. Previous studies have shown 

that load transfer in particulate media can be correlated with the spatial distribuiton of branch 

vectors. Based on this concept, our three media generating schemes have been designed to 

construct model granular materials with highly, moderately and weakly anisotropic 

distributions of branch vectors. Results of a set of DEM simulations are summarized in Table 

7.1. 

Figure 7.8 shows one example assembly model that is referred to as a highly 

anisotropic medium. The model contains 378 particles which have been randomly arranged 

while being subject to generation preferences allowing particular fabric anisotropies. In order 

to quantify and correlate such fabric or material microstructure to wave propagational 

behaviors, the distribution of branch vector orientations of the assembly was computed, and 

a polar diagram plot of this distribution is shown in Figure 7.8. It can be observed from the 

distribution plot that this model material system shows preferred directions (anisotropy) with 

more branch vectors distributed in the vertical direction than in the horizontal Thus we 

would expect wave transmission to be correlated with this anisotropic fabric. 

Dynamic input for wave propagation was created through simultaneous loading of 

particles along left and bottom edges of the assembly as shown. Input loadings were applied 

with identical magnitude and time history as used in the one-dimensional simulations. The 

transmitted wave output (measured by the inter-particle contact forces) was collected among 

the particles along the right and top sides of the assembly, and thus this technique can provide 

comparisons of horizontal and vertical wave propagational behaviors. 

Discrete element simulation results of the wave propagation through this assembly are 

shown in Figure 7.9. Normalized average wave transmission through the assembly for the 

horizontal and vertical loading cases are illustrated. The vertical scale represents the average 

of all interparticle load transfers at the output side of the assembly normalized with respect 

to the input. These results indicate that the wave transmission is clearly related to the 

anisotropic fabric of the model particulate material in that less wave attenuation occurs for 

the vertical propagation case. Figure 7.10 shows vertical propagation results of the same 

model material for the case with different inter-particle gap spacing. It can be observed that 

with an increase of gap spacing, average attenuation will increase as will the arrival time of 

the signal, thus implying a reduction in the wave speed. These results are consistent with our 
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one-dimensional simulations. For the case of vertical propagation, an average wave speed 

of 1100 m/s was found for the gap spacing of 0.1 pm, while for the 0.2 urn spacing case, the 

wave speed was found to be 540 m/s. In order to investigate the effect of particle size on the 

wave propagational characteristics, an indentical assembly as shown in Figure 7.8 was 

constructed which had the same branch vector distribution but with particles of 1 mm 

diameter. Comparison of the simulation results of vertical wave propagation for the two 

assemblies with constant input stress loading is shown in Figure 7.11. These results indicate 

that the smaller particles had an average wave speed of approximately 950 m/s, which is 

smaller than that found in the 2 mm particle case. This trend is consistent with our previous 

studies on unsaturated granular material. 

A second material model was generated using a moderately anisotropic granular 

media generator. The material assembly contains 441 particles and is shown in Figure 7 12 

along with the branch vector distribution. It can be observed from the branch vector diagram 

that this assembly has a slight preference for wave transmission in the horizontal direction. 

Discrete element simulations of wave propagation in the horizontal and vertical directions are 

shown in Figures 7.13 and 7.14. Computational model parameters used in this case are 

identical to those of the previous example. The results shown in Figure 7.13 indicate that, as 

expected, the wave attenution is less in the horizontal direction, thus correlating with branch 

vector fabric. Figure 7.14 compares the horizontal wave transmission for two different 

particle gap spacings, and again it is observed that both attenuation and wave speed are 

sensitive to particle spacing. 

Using yet another generating scheme, a third material model was constucted which 

could be referred to as weakly anisotropic The assembly model and its branch vector 

distribution are shown in Figure 7.15 This model contains 179 particles and its branch vector 

fabric indicates a slight preference in the vertical direction. Computer simulations of wave 

propagation in the vertical and horizontal directions are shown in Figures 7 16 and 7.17. It 

is again observed that wave propagational behaviors correlate to some extent with the branch 

fabric distribution. 

7.2.5 Conclusions and Discussion 

A computational modeling scheme has been developed to study wave propagation 
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through granular materials saturated with pore fluid. The primary focus of the study has been 

to investigate microstructural or fabric effects and to relate such features with wave 

propagational behaviors. The modeling procedure uses an interparticle contact law developed 

from a simplified elastohydrodynamic solution for two circular disks interacting through a 

viscous fluid. This fluid contact law has been incorporated in a discrete element computer 

code to analyze the dynamic response of model particulate materials. 

The presence of pore fluid effects the manner in which dynamic loadings are 

transmitted through particulate materials and these have been related to the fluid viscosity and 

interparticle liquid gap spacing. Results from this study indicate that very little viscosity 

effects were found on wave attenuation, while a small increase in transmitted wave velocity 

was observed with increasing pore fluid viscosity. It has been pointed out by Bourbie, et.al., 

1987 that trapped or bound pore-fluid may behave as having a higher apparent viscosity than 

free fluid. The dimension of the fluid gap between particles had more sizeable effects on wave 

propagation. Wave speed was found to be inversely related to the gap size, and attenuation 

increased with particle spacing dimension. 

Several two-dimensional, meso-domain studies were conducted in which material 

models were simulated by large numbers of particles randomly arranged so as to create an 

average anisotropy within the entire mass. This method was used to provide a bridge 

between the micromechanical modeling and observable data on macroscale material. Wave 

propagation simulations generally correlated with average branch vector fabric in that higher 

wave speeds and less attenuation were found for wave propagation in preferred directions 

of high branch vector distribution. The results are also consistent with the well-known 

inverse relationship between wave speed and porosity 

Presently our discrete element model includes the effect of pore fluid only through 

interparticle lubrication theory It has been our belief and that of others that pore fluid inertia 

should also be accounted for at the micromechanical level A plausible method to do this 

would be to incorporate a squirt flow theory as suggested by Dvorkin and Nur, 1993 into our 

discrete element computer model This would allow this modeling technique to simulate the 

two most important microstructural mechanisms of saturated granular sediments, i.e.viscous 

and intertial pore fluid behaviors. Arguments have been made that incorporation of squirt flow 

mechanisms will provide   better simulation results and can more easily be extended to 
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materials with variable saturation. Additional work also needs to be done to provide a 

micromechanical description and connection with several Biot parameters including: 

apparent or added mass, tortuousity, pore size parameter, frame modulus, etc. The specific 

parameters related to the overall mobility of the pore fluid and its interaction with the skeletal 

frame would be of prime interest. 

7.3.1 Pore Fluid Behaviors: Experimental 

Wave propagation in a discontinuous media is of great interest to the soil and rock 

mechanics community. The propagation of elastic waves in the earth's crust is most intimately 

related to the properties of the sand, soil, and rocks which make up the various layers. These 

properties are greatly affected by the amount of fluid contained in the layer, porosity, particle 

size , and any binding material which may be present. 

Current interest in geomechanics is focused on transient phenomena occurring in 

earthquakes, wave loading, and consolidation. For all of these, the coupling between the 

deformation of the 'solid skeleton' of the soil or rock and the motion of the pore fluid is of 

primary importance. Researchers have looked at the effects of particle size, moisture content, 

and peak load magnitude on the transmissibility of pressure waves in a granular or soil 

medium. However, little attention has been paid to the effect of viscosity of the fluid which 

saturates the granular media. As an example, the soil or rock could be saturated with pure 

water or crude oil, whose viscosities are quite different. The viscosity is believed to affect the 

shear force transfer between particles This study deals primarily with loadings which have 

small shear components compared to the magnitude of the normal component. A complete 

understanding of the normal component in wave propagation must be ahcieved before the 

work will then focus on the shear transfer 

An experimental investigation is under way using dynamic photoelasticity and high 

speed photography to study stress wave propagation and dynamic load transfer in 

fluid-saturated granular media. An explosive charge is used to create a compressive stress 

wave which propagates in model granular assemblies. The granular media is simulated by 

circular disks fabricated from Homalite-100, a clear plastic, arranged in a specific orientation. 

Various fluids including water, glycerin, and two Dow Corning 200 fluids are being used in 

the study.  Fully saturated assemblies are being studied as well as partially saturated 
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assemblies. The data presented represents work that is currently under way in the laboratory. 

7.3.2 Experimental Procedure 

Experimental models for one and two dimensional arrangements are shown in Figure 

7.18. Two basic geometries are being investigated, namely single chain and hexagonal close- 

packed assemblies. A water tight container is constructed from acrylic sheets to which the 

circular disks and fluid are added. The fluids being used in this investigation include water, 

two Dow Corning 200 fluids with viscosities 10 times and 100 times the viscosity of water, 

respectively, and also glycerin, with a viscosity 1000 times that of water. Experiments have 

been conducted with fully saturated assemblies and partially saturated assemblies. At this 

point in the investigation, the partially saturated work only includes single chain assemblies. 

Fully saturated assemblies are completely filled with fluid after the disks are arranged 

into the desired geometry. Partially saturated assemblies only have fluid at the contact region. 

For the partially saturated experiments, approximately 0.01 cc of fluid was added to the 

contact region as the disks were placed into the single chain assembly. 

The wave propagation phenomena due to explosive loading was studied using the 

technique of dynamic photoelasticity in conjunction with high speed photography. This 

technique has been discussed in great detail in other publications (see Shukla and Nigam, 

1985) so only a brief explanation will be given here. Photoelasticity is an experimental 

technique whereby full field stress information is obtained for a specimen under load. 

Photographs are taken of the resulting fringe pattern at various times during the loading 

event. The fringe patterns are lines of constant maximum shear stress in the specimen and 

appear as light and dark bands in the specimen. An appropriate set of stress field equations 

allows one to solve for things such as contact load, half contact width, etc. 

Dynamic photoelasticity implies high speed events and therefore a high speed camera 

is needed to record the resulting fringe patterns. The high speed photographic system in use 

operates as a series of high intensity, extremely short duration (about 500 ns) pulses of light 

which provide photoelastic images at discrete times during the dynamic event. Typically the 

total duration of the experiment is about 200-300 us. These photographs of the wave 

propagation process at different stages of development provides the necessary data to obtain 

the velocity and attenuation of the peak contact load of the stress wave. 
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The wave velocity is obtained by plotting the instantaneous position of the wave front 

with respect to time. The slope of this line yields the average wave velocity. The contact load 

between disk pairs is obtained by analyzing the fringe patterns around the contact using the 

Hertz stress field equations which were generalized for plane stress by Smith and Liu (1953). 

7.3.3 Results and Discussion 

The first series of experiments were conducted with a one dimensional disk assembly. 

Figures 7.19, 7.20, and 7.21 show typical isochromatic fringes obtained from single chain 

arrangements saturated with water, 10 cs fluid, and 100 cs fluid, respectively. These 

photographs show little qualitative difference with respect to the propagating wave. Also, the 

nature of the stress field in the disks appears unaffected by the fluid when compared to a dry 

assembly. Therefore, unlike a cemented contact, Hertz theory and the analysis techniques 

utilized for a dry contact (Shukla and Nigam, 1985) will yield accurate contact loads. 

A typical plot of contact load as a function of time for a water saturated single chain 

assembly is shown in Figure 7.22. The plot shows that the nature of the wave propagating 

through the assembly is similar to that seen in assemblies without fluid saturation. There is no 

significant dispersion (which would appear as a spreading of the pulse) or dramatic changes 

in the load profile shapes. From plots like these, the peak contact load is extracted for each 

disk-to-disk contact point and is used to determine the attenuation characteristics for various 

assemblies. Figure 7.23 shows the attenuation data for dry, water saturation, 10 cs fluid 

saturation, and 100 cs fluid saturation. The amplitude attenuation for four disk lengths (102 

mm) is about 20% for the case with water and only varies by about 4% for the different fluids. 

Comparing this to the dry case, where the attenuation has been shown to be only around 14%, 

there is approximately a 10% increase in attenuation across four disk lengths. 

Figures 7.24 and 7.25 show typical isochromatic fringes obtained from experiments 

with partially saturated contacts where the fluids are water and glycerin, respectively. The two 

figures show generally the same wave propagation phenomena. Using load versus time plots 

similar to that shown earlier, attenuation data was obtained for the case partially saturated 

with water and is shown in Figure 7.26. One can see that the attenuation across four disks for 

this case is approximately 35%. Compared to both the dry case and the fully saturated cases, 

this is quite dramatic. More energy is being lost in the partially saturated media than in the 
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fully saturated media. 

A possible explanation for the increased energy loss is the movement of the pore fluid 

from between the particles. In Figure 7.24, the fluid can be seen to be ejected from between 

the first few disks in the last three frames of the figure. Figure 7.27 shows a plot of the half- 

width of this fluid as a function of time. The plot represents the horizontal component of the 

velocity of the fluid as it is ejected from the contact area. Fluid velocity ranges from a high 

of about 60 m/s for the first wet contact down to 15-20 m/s for the later contacts. Although 

the net mass of the moving fluid is not known, the kinetic energy of the ejected fluid is 

primarily dependant on the square of the velocity which appears significant in this case. In the 

fully saturated cases, the fluid at the contact is constrained by the surrounding fluid in the 

assembly, which prevents the large amount of energy transfer in the form of kinetic energy. 

The wave front position as a function of time was plotted for each assembly and Table 

7.2 shows the resulting average wave front velocities for the various cases tested as well as 

that for air. The case with air as the saturating fluid is included for the sake of comparison. 

This table also includes velocity values for the two dimensional assemblies. For these cases 

the velocity reported is the average wave front velocity for the wave traveling in the main 

chain (defined in Figure 7.18 b.)). 

The maximum percent difference between the velocity for air saturation and the 100 

cs fluid, for either the one or two dimensional assemblies, is about 12%. Between the two 

different. Dow Corning fluids the difference is negligible. These results differ from that 

reported earlier in this chapter with regard to what is predicted by the Biot / squirt flow model 

and what has been observed in the field. As these are only preliminary results, further study 

is required to confirm the observations. So, while the results show a small drop in average 

velocity, no significant conclusions can be drawn based on the viscosity change 

However, average wave velocities for the two partially saturated cases are quite 

different. The assembly partially saturated with water produced an average wave velocity of 

approximately 1100 m/s while the glycerin case produced approximately 1250 m/s. The 

results might imply that for the partially saturated assembly, the increase in wave velocity 

corresponds to the increase in fluid viscosity but at this time there is an insufficient amount 

of data to conclusively state this. 

Future work will include a more thorough investigation of fluid viscosity effects, 
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including maintaining nearly constant fluid density while varying viscosity, and maintaining 

nearly constant fluid viscosity while varying density. Density plays an important role in 

determining the acoustic impedance mismatch between the disk material and the fluid while 

viscosity plays a role in fluid motion. If two materials have highly mismatched acoustic 

impedance, the wave will not propagate easily from the low acoustic impedance material to 

the high acoustic impedance material. Generally, the denser the material, the lower the 

acoustic impedance. In the case of glycerin placed between Homalite disks, the densities are 

nearly the same (1260 kg/m3 for glycerin and 1230 kg/m3 for Homalite). The result is 

excellent wave propagation characteristics through the glycerin. 

Figures 7.28, 7.29, and 7.30 show wave propagation in a hexagonal close-packed 

granular media saturated with water, the 10 cs fluid, and the 100 cs fluid, respectively. Recall 

that the wave velocities listed in Table 7.2 for the two dimensional assemblies are almost the 

same as those from single chain experiments. However, unlike the single chain experimental 

results, the contact load attenuation in the main chain for saturated granular media is less than 

that for unsaturated media. The attenuation data is shown in Table 7.3. 

It can be seen from the photographs in the fore-mentioned figures that most energy 

transfer occurred in the two main chains. This is based on the higher order fringes that occur 

at the contacts in the main chains when compared to contacts in other locations. However, 

for unsaturated HCP models, as shown in Figure 7.31, the energy transfer not only occurred 

in the main chains, but also in the disks adjacent to the main chain. The lesser attenuation rate 

reflects the observed energy transfer phenomenon. 

However, questions arise for these assemblies because the fringe patterns are not 

symmetric about a vertical line passing through the point at which the input loading occurred 

Regardless of the fluid saturating the assembly, the symmetry of the assembly geometry 

should result in a symmetric spreading wave. At this point, several possible causes are being 

considered, including the following; 1.) the contacts were not all uniformly wetted, and 2.) 

a buoyancy force which would depend on the density of the saturation fluid. The first concern 

can be easily verified by wetting each contact as the assembly is being constructed so that 

when it is filled with fluid, the contacts have been pre-wetted and there is little chance of some 

remaining dry. The second concern is currently under consideration. If a small variation in 

buoyancy force were present, the fluid film between particles could be affected. The film 
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thickness would be dependant on the weight of the disks above the contact in question which 

changes with saturation fluid density. Computer simulations have shown that the fluid film 

thickness between the disks does play a dominant role in the resulting wave speed. 
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Stress Wave Velocity (m/s) 

Assembly 
Type 

Fully Saturated Partially Saturated 

Air 
(1/55 cs) 

Water 
(Ics) 

10 cs 
Fluid 

100 cs 
Fluid 

Water 
(Ics) 

Glycerin 
(103cs) 

1-D 1050 965 950 940 1100 1250 

2-D 1010 960 950 900 - - 

Table 7.2. Wave velocities for fully saturated and partially saturated assemblies. 

Contact Load Attenuation Across 4 Disks (102 mm) 

Assembly 
Type 

Fully Saturated 

Air 
(1/55 cs) 

Water 
(Ics) 

10 cs Fluid 100 cs Fluid 

1-D 18% 24% 25% 23% 

2-D 70% 62% 52% 53% 

Table 7.3. Load attenuation data for fully saturated assemblies 
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Pore Fluid 

50-200^ 

i-th Particle Analysis InPut Loading 

Figure 7.1. Discrete Element Modeling Procedure 

Figure 7.2. Particle Interaction Through a Viscous Fluid 
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Figure 7.3. One Dimensional Example 
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Figure 7.4. Wave Velocity Behavior vs. Particle Spacing 
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Figure 7.7. Various Fabric Measure Used for Particulate Materials 
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(Assembly) 

(Branch Vector Distribution) 

Figure 7.8. Highly Anisotropie Material Model 
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Figure 7.9. Average Transmitted Wave Amplitude 
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Figure 7.10. Vertical Transmission for Highly Anisotropie Model 

with Different Initial Particle Gap Spacings 
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Figure 7.12. Moderately Anisotropie Material Model 
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Figure 7.15. Weakly Anisotropie Material Model 
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CHAPTER 8 

EVALUATION OF FIBER OPTIC SENSORS FOR STRAIN 

MEASUREMENTAND PRELIMINARY APPLICATIONS 

TO CONTACT MECHANICS 

8.1 Summary 

Three different fiber optic sensors have been evaluated for their potential application 

to contact mechanics problems. The sensors included the Mach-Zehnder and Fabry Perot 

interferometers and the figure of eight intensity based sensor. In general, the sensors all 

responded to the strains or displacements which resulted from static diametral compression 

of disks and or spheres. The individual sensors each had their intrinsic positive features as well 

as drawbacks. 

The Mach-Zehnder interferometer shows promise for laboratory based research where 

the local environment can be more closely controlled. Interferometric sensors typically 

provide much finer resolution and as such must be more closely controlled. The sensor suffers 

from lead in and lead out sensitivity which would be more difficult to control outsitde of the 

lab. In contrast, the Fabry-Perot interferometer suffers none of the lead sensitivity problems 

of the Mach-Zehnder due to its unique design. Additionally, interferometric sensors require 

a monochromatic, coherent light source which is typically a laser or laser diode 

The intensity based sensors typically are fed with a light emmitting diode (LED) as 

monochromatic, coherent light is not needed. The mechanism by which the light is affected 

and the resolution capabilities of the detection equipment result in a sensor which does not 

have the absolute sensitivity of interferometric sensors, however, the sensor tends to be more 

robust and less susceptibel to environmental effects With this in mind, an intensity based 

sensor was developed and subsequently evaluated 

The sensor incorporates an extremely simple design, light source, and detector. 

Testing was done using quasi-static extension, a simple oscillating cantilever beam, and a 

small shaker capable of frequencies up to 10 kHz. The sensor shows response over a wide 

range of 410 mm. The response has two distinct linear regions with a central non linear 

region. For small displacements, the sensor shows excellent frequency response up to 10 kHz. 
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At this stage, no attempt has been made to theoretically predict the light loss behavior 

associated with this macrobend sensor(Marcuse, 1976, Lagakos, et.al., 1987), but rather to 

simply demonstrate the basic function of the novel geometry of the sensing element and 

determine the applicability to contact mechanics. 

8.2 Introduction 

In this chapter, an attempt has been made to study the applicability of both attached 

and embedded fiber optic sensors to measure in plane and out of plane strain due to contact 

loadings, as well as displacements due to the same. Both two and three dimensional 

experiments have been conducted. Prior to applying fiber optic sensors to contact mechanics 

problems, they were evaluated to determine the maximum strains that could be measured 

reliably. In the past, resistive foil strain gages have been used successfully to evaluate contacts 

in both static and dynamic problems (Xu and Shukla, 1993). However, strain gages are 

limited in their use to surface strain measurements. Also, they cannot be easily bonded to 

certain kinds of materials like rock and concrete. Fiber optic sensors on the other hand can 

be used for both surface (Sirkis and Taylor, 1988) and interior strain measurements (Murphy 

et. ai, 1989). Fiber optic sensors have also been shown to be applicable for use in electrically 

noisy environments (Griffiths, 1991), and in high temperature areas (Wang, 1992). The 

ultimate aim of the study is to accurately predict local strains at any point in a three 

dimensional body for both static and dynamic loading. 

Fiber optic sensors have long been touted for their potential application to 'smart 

structures' applications. With the development of smart materials several off shoot 

technologies have also evolved. In particular, the use of optical fibers as sensors for the 

measurement of mechanical quantities has seen considerable growth. Most of these sensors 

are still intricate in their construction and require elaborate electronics. This paper presents 

a rather simple design for an intensity based displacement transducer with a large operating 

range. 

A sampling of the benefits of fiber optic sensors over their conventional counterparts 

include their resistance to electromagnetic interference, resistance to hostile environments, 

light weight and small size. Also, an extensive array of ancillary components and systems have 

been developed by the communications industry and are available at relatively low cost. These 
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many benefits are being exploited more and more for modern sensor design. Several studies 

using fiber optics for sensor design have appeared in recent years. A complete review of all 

of these is beyond the scope of this document but the following will serve to demonstrate the 

depth of the field of fiber optics as sensing elements. 

One of the first demonstrations of the potential for optical fibers to be used as sensors 

was published in 1978 (Butter and Hocker, 1978). Butter and Hocker (1978) showed that 

optical fibers could be configured as a Mach-Zehnder interferometer and strain applied to one 

arm of the arrangement would result in a spatial shift of the interference pattern. This shift of 

the interference fringes was directly related to the applied strain. After this demonstration, 

many different groups and laboratories have accelerated the progress (e.g., Sirkis and Taylor, 

1988, Lee, et. al., 1989, and Narendran, et. al., 1991, 1992 and 1993). 

Applications of fiber optic sensors cover many diverse fields and needs. In recent 

years fiber optic sensors have gained considerable interest from the engineering community 

with the greatest interest lying in the development of'smart materials' (Claus, 1990, and 

Measures, 1992). Their inherent geometry also makes them ideal for embedding in modern 

composite structures and applications exist for non destructive testing (DePaula, et. al., 1982, 

and Narendran, et. al., 1995). 

Fiber optic sensors have also found many applications in structural civil engineering 

problems (Ansari, 1993). One area of testing and experimentation that has not yet been fully 

explored with regard to fiber optic sensors is soil mechanics. As an example, strain 

measurements during axial or triaxial testing of soils and granular substances is mostly 

restricted to measuring the platen or end plate displacements. This method produces average 

strains over the entire specimen but is not adequate for measuring local deformations. An 

alternative is to place instrumentation directly on the specimen membrane. One of the 

disadvantages of this technique is that the sensing mechanism may either reenforce the local 

region or the weight of the sensor may produce adverse effects on the measurement. The 

problems of reenforcement and sensor weight can be eliminated with the use of fiber optic 

sensors. Fibers are extremely small and light in weight, and combined with proper sensor 

configuration, the reenforcing effects can be virtually eliminated. 
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8.3 Sensor Construction 

8.3.1 Mach-Zehnder Interferometer 

Construction of a Mach-Zehnder sensor is quite simple, and a schematic of the setup 

is shown in Figure 8.1. A laser beam is split with a beam splitter and the two resulting beams 

are then coupled into two separate single mode optical fibers. One of the fibers is chosen as 

the reference path and the other fiber becomes the sensing arm. The two separate beams are 

then recombined and the resulting interference pattern is projected onto a photodiode. The 

interference fringes produced can be related to the axial strain seen by the sensor. 

In operation, the fringe pattern remains stationary when the sensor undergoes no 

strain and the output from the photodiode is constant. When the sensor experiences axial 

strain, the fringe pattern shifts across the face of the photodiode resulting in a sinusoidal type 

output. It is this sinusoidal output that can be related to the applied strain. 

Care must be taken with the Mach-Zehnder interferometer because all of the fiber in 

the setup has the potential to affect the light propagating through it. In other words, the entire 

length of fiber, in either arm, can be the sensing element. Care must be taken to ensure that 

only the desired measurand is affecting the output signal. This is one of the drawbacks to the 

sensor and therefore, it is not easily applicable to field applications. 

8.3.2 Fabry-Perot Interferometer 

Figure 8.2 shows a schematic of an extrinsic Fabry-Perot sensor. The experimental 

setup is almost the same as that for the Mach-Zehnder and is shown in Figure 8.3. The 

schematic of the actual sensor, Figure 8.2, shows two pieces of optical fiber that are bonded 

into a glass tube. The fiber ends are partially mirrored to provide the necessary reflections for 

a low finesse Fabry-Perot cavity. Fiber diameter that is used in the laboratory is 125 microns 

due to the availability of the appropriate couplers and equipment for this size fiber Purchasing 

ready made sensors is quite expensive and since the sensors may become damaged during 

experiments, a simple method to manufacture them was needed. 

Since this sensor is an interferometric sensor, a single mode fiber rated to carry the 

particular input wavelength is used. A helium-neon laser is used in the laboratory so the single 

mode fiber is purchased to support the 633 nm wavelength. Approximately 0.5 m of single 

mode fiber is cleaved for the sensor  The completed sensor is later coupled   to the 
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experimental setup using Norland Lab Splices. The fiber that provides the opposite mirrored 

surface is a multimode fiber because of its lower cost. This fiber only needs to be long enough 

to insert into the glass tube but is generally cut to approximately 50 mm for ease of handling. 

The mirroring is done with sputtering equipment and aluminum is used to create the 

mirrors. The fibers are first carefully cleaved and cleaned to provide a flat surface upon which 

to sputter the aluminum. Sputtering times may vary with equipment so a glass slide is first 

placed in the sputterer to determine an appropriate time. Reflectivity should be approximately 

25% on the single mode fiber and from 25% to 100% on the multimode fiber. 

After the fibers were coated, the glass tube was prepared. A short length of glass 

tubing, approximately 25 mm, was cut and one end cleaved flat. The tubing measured 135 

microns on the inside diameter and 190 microns on the outside diameter. Both the prepared 

tubing and one of the coated fibers were placed into a jig that was developed to allow 

alignment of the fiber and the tube under an optical microscope. The jig is shown in Figure 

8.4 and consists of an X-Y positioner with Z translation and a mirror holder/positioner that 

is used to allow the fiber and the tube axes to be made parallel. This jig was angled, with 

respect to the horizontal, to allow viewing of the tube end while the fiber was being 

positioned for insertion. This open tube end always faces up and is located over the small 

white reflective surface to provide back-lighting. 

The first fiber was inserted into the prepared end of the tube and bonded using a five 

minute epoxy. The fiber was inserted so as to achieve the desired gage length and to allow 

approximately 10-40 microns between coated fiber ends when the sensor was completed. 

After the epoxy was cured, the tube was cleaved again to the desired gage length, the second 

fiber was inserted and positioned for the correct gap, and the epoxy was applied to the second 

fiber. Once the epoxy has cured, an accurate measurement of the finished gage length is made 

under the microscope, and the sensor is ready for use. 

8.3.3 Figure of Eight Microbend Sensor 

The figure eight sensor utilizes a continuous piece of multimode optical fiber (Corning 

62.5/125 um LNF™, NA=0.275) 'tied' into the shape of a figure of eight. A sketch of the 

sensor is shown in Figure 8.5, where the dimension z will hereto be referred to as sensor size 

The geometry allows the natural stiffness of the fiber to act as a restoring force which holds 
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the shape of the sensor during extension and compression. Put simply, the fiber will attempt 

to 'unwrap' itself and return to a straight line were it not for the constraint imposed by the 

knot geometry. Some improvements over previously reported bend loss type sensors are that 

the sensor requires no external mechanism to cause the bends and unlike sensors 

incorporating pre-molded sinusoidal deformations (Weiss, 1989) or etching (Vaziri and Chen, 

1992), this sensor responds equally as well in tension and compression. 

This sensor functions as an intensity based optical fiber strain or displacement 

transducer when the fiber is bonded to a body at two points, one on each side of the loops. 

Note that the loops remain free to move and it is the fiber on each side of the loops that is to 

be bonded. The initial distance between the bond points will determine the initial gage length, 

while the dimension z determines the sensitivity. As the sensor is extended, the distance 

between bond points will change, and will be referred to as x. Since multimode fiber is used 

in the construction, a simple LED/PIN diode can be used for the light source and detector. 

Figure 8.6 shows a schematic of the setup for the sensor with the associated electronics for 

light source and detection. 

As the two fixed points are displaced with respect to each other, the radii of curvature 

of the sensor loops changes. A tensile strain (extension) would result in a shrinking of the 

sensor loops and drop in light intensity measured at the detector. Conversely, a compressive 

strain would result in an expansion of the loops and an intensity increase at the detector. 

The light source was a Motorola MFOE1200 diode coupled to a driving circuit 

utilizing a 10V DC supply. The detector was a Motorola MFOD1100 (matching component 

for the diode) with an 18V DC bias, which was coupled to a twenty times amplifier with a 

variable DC offset. The amplifier was powered with ± 12V DC supply. 

8.4 Calibration 

The principle of operation of a Mach-Zehnder interferometric fiber optic sensor was 

mentioned above. The axial strain, ex, is directly proportional to the number of fringes, N, 

moving past a fixed point and can be given as (Butter and Hocker, 1978) 

e*=DN (8.1) 

where D is the proportionality constant and can be written as 
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D= 
X\ 

v nl)[\-c 
(8.2) 

where X is the vacuum wavelength of the optical beam, 1 is the gage length of the sensor, n 

is the refractive index of the fiber, and c is a constant which depends on strain optic 

coefficients, the refractive index, and Poisson's ratio of the fiber. It is possible to calculate D 

for pure silica, however, dopants are used to alter the refractive index of the core of the fiber 

to keep the light propagating in the fiber. Hence, the fiber has to be calibrated to determine 

the constant D. 

The Mach-Zehnder sensor was calibrated using a cantilever beam setup as shown in 

Figure 8.7. The fiber sensor was mounted to a cantilever beam, opposite a conventional strain 

gage. The beam was displaced and a plot of the axial strain recorded from the strain gage vs. 

the fringes was made for a particular gage length of the fiber. A straight line was fit through 

the data points. The slope of this straight line was the constant D as shown in Figure 8.8. The 

strain required to cause one fringe to move across a fixed point is inversely proportional to 

the gage length of the sensor. In other words, equation (8.1) can be written as shown in 

equation (8.3) where A is the fringe strain sensitivity constant for the sensor. The fringe strain 

sensitivity can be defined as the strain required to cause one fringe to move across a given 

e = 
'A' 

N (8.3) 

point for a unit gage length of the sensor. The experimentally obtained value for A was found 

to be 625 umm/mm fringe"1 mm. 

Strain is obtained from the Fabry-Perot sensor in much the same way as the Mach- 

Zehnder sensor. However, the relationship between the number of fringes passing and the 

strain is only dependant on the wavelength of the light propagating and the gage length of the 

sensor. Calibration of the sensor is not necessary. The relationship between the fringe shift 

and the axial strain is explicitly given by equation (8.4). Again, N is the number of fringes, X 

is the wavelength of light, and L is the measured gage length of the sensor. 
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The figure eight sensor must be calibrated much the same as the Mach-Zehnder 

sensor.The output intensity and strain gage data was measured and cross plotted. Figure 8.9 

shows the resulting calibration plot whose slope was found to be 36 um/mV. 

8.5 Evaluation of the Fiber Optic Sensor 

8.5.1 Tension Testing/ Extension 

The Mach-Zehnder sensor was used for the initial evaluation of the fiber optic sensor. 

A single mode fiber with an outer diameter of 80 microns was stripped of its plastic jacket in 

the region that was to be bonded to the specimen. The plastic jacket must be stripped to 

ensure proper strain transfer between the specimen and the optical fiber. Also, the surface of 

the specimen must be treated in accordance with conventional strain gage techniques prior 

to attachment. Two pieces of tape were placed on the specimen leaving the desired gage 

length exposed between the tape pieces. These tape pieces serve as masks so that only the 

desired length of fiber will be bonded. The tape mask was then sliced along the direction that 

the fiber will run. This was done to allow the tape to be removed after the fiber is bonded. 

Figure 8.10 shows the specimen with the tape mask in place. The fiber was then laid into the 

slice and bonded. After the adhesive cures, the tape is removed. 

A simple tension test was used to characterize the fiber sensor under axial loading 

conditions. A schematic of the setup for the Mach-Zehnder interferometer was shown in 

Figure 8.1. The specimen was a dog bone specimen with a resistance type strain gage bonded 

to one side of the specimen and the fiber-optic sensor bonded to the other side, directly 

opposite the strain gage. The experiments were designed for axial strain measurements only 

To standardize the bonding procedure, both sensors were bonded with M-Bond 200, a 

cyanoacrylate based adhesive, using the technique described in Measurements Group Bulletin 

309A. Ambient conditions in the laboratory are maintained at 21°C, ± 3, and 65% relative 

humidity, ± 5. 

The specimens were then loaded at a constant strain rate and the strain gage signal 

was recorded, along with the light intensity signal from the photodiode, with a Lecroy data 
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acquisition system. In each experiment, loading was continued until failure of either the strain 

gage or the fiber-optic sensor. 

Another series of experiments was conducted in which the specimen was loaded in 

incremental values from an unloaded condition to a failure condition. The specimen was 

unloaded and removed from the fixture at 500 microstrain increments and taken to an optical 

microscope for inspection. The specimen was examined and photographs were taken of any 

significant changes in the adhesive bond. After reconnecting the two sensors to the data 

acquisition equipment, the specimen was strained to the next incremental value and the 

procedure was repeated. 

Figure 8.11 shows typical output from the strain gage and the Mach-Zehnder sensor 

for the axial loading experiments. The strain data from both the strain gage and the fiber 

sensor is shown in Figure 8.12. 

It can be seen that the Mach-Zehnder sensor was linear and the sensor can be used for 

strain measurements. However, the fiber-optic sensor was found to fail at strain levels far 

below the levels at which conventional strain gages fail. Failure modes could be characterized 

in two ways: 

• the fiber fractures and the sensing signal is lost. 

• the fiber delaminates with matrix cracking, resulting in a change in effective 

sensor gage length. 

Note that the delamination and matrix failure is related to the bonding of the fiber and does 

not represent a shortcoming of the glue. A separate experiment was conducted with only a 

thin layer of glue and the glue did not show cracking or failure during the experiment. The 

maximum value reached during this experiment was 2 percent strain. 

The data presented in Figure 8.12 shows failure by fracture of the fiber which resulted 

in loss of the sensing signal and therefore, loss of the interference fringes Both modes of 

failure produced unusable data at values between 1.2-1.8 percent strain. Photographs taken 

during the incremental loading are shown in Figure 8.13. Figure 8.13(a) shows the fiber in an 

unstrained state and as it appears up until failure. The bright line running down the center of 

the fiber is the contact between the fiber and the specimen. Note that the glue does not cover 

the entire fiber but rather forms a bed under the fiber. 

In Figure 8.13(b), the delaminated region shows up as a wide, bright band. This is 
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caused by the detracting of the microscope light from the air gap that opened up between the 

fiber and the specimen. Under actual observation the band appears as colored fringes Note 

also that the glue matrix shows cracking. These cracks will always curve toward the portion 

of the fiber that is unattached and unstrained, and therefore show that delamination has 

occurred from left to right in the photograph. The right side of the photograph shows the 

portion of fiber that has not yet delaminated. 

Figure 8.13(c) represents an experiment in which the fiber fractured. There is a central 

crack in the matrix that is aligned with the fracture in the fiber. All other cracks curve toward 

the fracture area. This matrix cracking shows that subsequent delamination of the fiber 

occurred after the fracture and ran outward from the fiber fracture in both directions. 

Figure 8.14 shows strain data obtained from the incremented experiment. The strain 

gage data was plotted using a linear regression curve fit. The data shows that the specimen 

remained linearly elastic throughout the experiment. The first run, represented by the circles, 

and the second run, represented by the inverted triangles, was made up to 1 and 1.5 percent 

strain, respectively. Following the second run, observation of the fiber sensor showed 

delamination, see Fig. 8.13. 

Analysis of the raw data showed the effect of the delamination on the fiber sensor 

output. Figure 8.15 shows an anomaly that occurred at approximately 13,200 microstrain, 

during the 2nd run. The fringes from the 1 st run, where no anomaly was seen, and those that 

precede and follow the anomaly in the 2nd run, are regular and do not appear distorted. 

Since the strain calculation, given in equation (8.1), is based on the gage length, the 

observed strain will be affected if a change in gage length is not accounted for. This affect can 

be seen in Figure 8.15, runs 3 and 4. Runs 3 and 4 were made up to 1.6 and 1.7 percent 

strain, respectively. Fringes from both of these runs showed numerous anomalies 

From these observations, it is believed that the initial delamination occurred at the end 

of the second run and the damage grew during the 3rd and 4th runs. This damage growth is 

illustrated by the difference in strain observed in those runs. 

From the initial failure experiments, it was determined that the fiber sensor typically 

failed at strains around 1.5%. The first strain level at which to stop was set at 1% strain, or 

10,000 microstrain. In all experiments, the sensor showed no significant changes before 

reaching this strain level. The 500 microstrain increment was then followed until failure. 
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From these characterization experiments it was determined that fiber optic sensors 

which were bonded along their entire length could be confidently used up to a strain level of 

1.5 percent. With the figure eight sensor only two points are bonded and the glass fiber does 

not see the high strains that the specimen does. The sensor geometry is such that the sensor 

is capable of responding over a larger displacement range. 

To investigate the range of the figure eight sensor an experiment was performed on 

an Instron testing machine using a sensor with an initial dimension of z=150 mm (see Figure 

8.5) measured from one end of the loops to the other. Outside of the loop region, the fiber 

was attached to the fixed head and the movable crosshead of the testing machine (xiniual=200 

mm). The crosshead on the testing machine was then extended at a slow speed (12.7 mm/min) 

while the sensor output was captured on a Nicolet digital storage oscilloscope. The complete 

plot of sensor output versus extension, x-x^, is shown in Figure 8.16 with the experimental 

points shown as symbols. Due to the large number of data points, only every 50th data point 

has been shown. The figure shows three distinct regions; a linear region with shallow negative 

slope, a nonlinear region, and a second linear region with a large negative slope. Each of these 

regions have been curve fit with equations. It should be noted that the plot is actually a 

composite of two separate runs. During the experiment the signal change exceeded the 

capabilities of the amplifier circuit so the test was stopped and the DC offset was utilized to 

shift the output level. The amount of the shift was then accounted for when compiling the 

data into the plot shown. 

In the first linear region (0-200 mm crosshead extension from initial), a least squares, 

first order curve fit was applied. A multiple correlation coefficient squared value, R2 = 0.957, 

was obtained. Similar treatment was given to the third region (380-410 mm crosshead 

extension from initial) with an R2 = 0.996. The mean deviation from linearity in these regions 

was found to be 1.2 and 0.02 percent for the first and second regions, respectively. The 

maximum deviations from linearity were found to be 7.1 percent for the former and 8.4 

percent for the latter region. 

The central nonlinear region was fit with a hyperbolic expression of the form given 

in equation (8.5) 

215 



y 
ax 

b + x 
(8.5) 

Equation (8.5) represents a rectangular hyperbola where the curve rises asymptotically from 

0 to a. The constant b represents the value of x at which the function y has reached 0.5a. 

Comparing this description of the behavior of the curve described by equation (8.5) to the 

graph shown in Figure 8.16, it should be obvious that some manipulation of the expression 

is required before it can be utilized to fit the experimental data. 

The first step is to solve equation (8.5) for x in order that the curve may be mirrored 

about the y axis by multiplying the resultant expression by negative one. Additionally, the 

curve must be shifted by some constant values in both the x and y directions (constants c and 

d, respectively, below). The new expression for x is given as 

x = - (y + d)b 
a - {y + d) (8.6) 

Lastly, solving equation (8.6) for y and combining constants yields 

e + fx 
y 

g 
(8.7) 

where linear combinations of a, b, c, and d have been incorporated into the new constants e, 

f, and g for brevity. 

A Marquardt-Levenberg algorithm was used to determine the parameters which 

minimize the least squares of the sum of differences between the dependant variables and the 

observed values. The result for the three curve fitting operations is a set of three functions 

which depend upon the extension from the original sensor size of z=l 50 mm 

/(*) 

y -  m, x  + b{ 

ex + f 
y  =  L 

g ~ x 

y  = m2x + b2 

0 < x <  200 

200 < x <  380 

380 < x < 410 

(8.8) 
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corresponding to the three regions described earlier. An important note is that Figure 8.16 

represents a complete calibration plot for the sensor. However, as the extension from the 

original size is a somewhat impractical reference, a relationship between sensor size, z, and 

crosshead extension, x was sought. 

Another experiment was conducted in which the sensor was extended over 

approximately 375 mm. The initial sensor size was set to z= 150 mm and extension was begun. 

Sensor dimension was measured at discrete points during the extension and the resulting plot 

is shown in Figure 8.17. The figure shows a linear relationship between sensor size, z, and 

extension, x, which allows a direct transformation between the two through another first 

order least squares curve fit. 

The data of Figure 8.16 was used to evaluate the sensitivity of the sensor. Figure 8.18 

shows the sensitivity, defined as the change in output per unit input, as a function of sensor 

dimension. The linear relationship derived from figure 4 transforms sensor extension to sensor 

size. The sensitivity is defined as the derivative of the output with respect to the input which 

in this case is done for the three separate functions of equation (8.9). Figure 8.18 better 

illustrates the various sensitivity regions and the fact that the sensitivity is directly related to 

the size of the sensor. As the sensor size decreases, the loop radii also decreases causing more 

light to be lost for a given input and thus increasing sensitivity. 

Using the parameters obtained from the curve fitting of Figure 8.16 and the 

derivatives of the functions defined in equation (8.9), the sensitivities were determined for the 

three regions. As stated, the smaller the sensor dimension, the higher the sensitivity. In its 

most sensitive configuration, (z=8-12 mm loop-to-loop dimension) the calibration constant 

was found to be approximately 475 mV/mm. Referring back to Figure 8 16, the linear range 

at the highest sensitivity corresponds to the region of maximum extension (380-410 mm). So 

according to the data presented, the sensor has a sensitivity of 475 mV/mm over a range of 

approximately 30 mm at the highest sensitivity level The second linear region shows a lower 

sensitivity but has a broader range. Namely, the sensitivity is approximately 8 mV/mm over 

a range of 200 mm. The nonlinear region represents a continuously changing sensitivity over 

approximately 160 mm. 

As the figure eight sensor was developed in our laboratory, significantly more 

characterization was required in order to obtain a degree of confidence in the sensors 
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behavior. Further experimentation was required to explore such things as repeatability and 

frequency response. 

The plot of Figure 8.19 shows the results of an experiment to assess the repeatability 

of sensor construction and performance with minimum effort expended in sensor construction 

and bonding. For this or any other experiment, there were no special fixtures or jigs used. 

Four sensors were bonded on one end to a fixed point and the other end to a micometer 

driven translation stage. The sensors were individually connected to the light source and 

detector and displaced approximately 3 mm while the output was recorded. The plot 

demonstrates good repeatability in sensor performance without sophisticated sensor 

construction fixtures or bonding procedures. 

The sensor was then bonded to a cantilever beam opposite an electrical resistance 

strain gage as shown in Figure 8.20. The beam was displaced and allowed to vibrate freely 

while both the strain gage output and the optical fiber sensor output were captured on an 

oscilloscope. The fiber sensor output was zero shifted and linearly scaled to fit the strain gage 

data with the result being shown in Figure 8.21. The figure shows that the fiber optic sensor 

matched the electrical resistance strain gage quite well and showed no hysterisis. The match 

is so good that the two signals are virtually indistinguishable from each other and, 

consequently, only every 10th data point is plotted for the fiber sensor. The reader should not 

be mislead into thinking that the peak values from the fiber sensor do not correspond to those 

of the strain gage as this is only an artifact of the plotting scheme. In fact, the mean of the 

error between the strain gage signal and the fiber optic sensor was found to be less than 1 

percent. This experiment also served as a low frequency response test (25 Hz) for the sensor. 

Lastly, one side of the sensor was bonded to a fixed surface and the other end was 

attached to a Wilcoxon Research F4/F7 electromagnetic/piezoelectric shaker system. The 

system was driven by a Hewlett-Packard spectrum analyzer which was also used to collect 

data from both a built in accelerometer and the fiber optic sensor. The shaker was driven with 

a sinusoidal signal at 1,3,5,7 and 10 kHz. Figure 8.22 shows a portion of the time series for 

both the fiber optic sensor and the accelerometer subject to a frequency of 3 kHz. Fast 

Fourier transforms (FFT's produced automatically by the analyzer) for the 3 kHz run are 

shown in Figure 8.23.The frequency plots show that the fiber optic sensor is in excellent 

agreement with the accelerometer with a much sharper peak in the fiber optic sensor data. It 
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should also be noted that this data is for a single run with no averaging which would tend to 

smooth the baseline noise in the data. All other tests produced similar results and the 

frequency plot for an oscillatory frequency of 10 kHz is shown in Figure 8.24 for further 

comparison. 

These frequency plots show excellent modal response from the sensor. However, the 

fiber optic sensor seems to suffer from a phase problem between 5-7 kHz. In this region the 

fiber optic sensor output shifts 180° in phase with respect to the accelerometer. Then at 10 

kHz the fiber optic sensor flips 180° again. This phase shift shows no effect on the frequency 

resolution capabilities but it should be acknowledged that the time domain data would not be 

in agreement. So, while the sensor works quite well for frequency resolution, the data can not 

yet be reliably transformed into absolute displacements at higher frequencies. 

8.6 Experimental Procedures for Contact Strain or Displacement Measurements 

The first set of experiments was aimed at applying fiber optic sensors to measure 

strains due to a static load. Disks 32 mm in diameter were machined from 6 mm thick 

plexiglass sheets. A fiber-optic Fabry-Perot strain sensor was bonded to the surface of the 

disk, close to the point of the applied load. The disk was then loaded in compression and data 

was collected from a PCB load cell and a photodiode using a Lecroy data acquisition system. 

The disk was loaded to approximately 1000 N. 

The second set of experiments were designed to measure out of plane strains in a disk 

using the same loading configuration as that used with the Fabry-Perot, however, a Mach- 

Zehnder sensor was used. A 2 mm hole was drilled through the thickness of the disk. The 

jacket on the fiber was removed and the fiber was embedded through the thickness using a 

chemical called Envirotex, whose mechanical properties are very similar to those of plexiglass. 

Again, a piezoelectric load cell placed directly below the disk was used to acquire the 

loading data From theory, strains can be calculated at any point on the disk if the load is 

known. As mentioned, the fiber was embedded on the loading axis and close to the contact 

point so that Hertz equations could be utilized for the analysis A Lecroy data acquisition 

system was used to record both the fiber optic and load cell signals. 

For the figure eight sensor, the experiment again invloved circular disks but two disks 

were used and the sensor was bonded from the center of one disk to the center of the second. 
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In short, the relative displacement between centers due to an applied load was measured. The 

disks were loaded at 0.01 inch per minute and the output light intensity was recorded during 

the loading. 

For the three dimensional experiments, 25.4 mm plexiglass spheres were embedded 

with a fiber, utilizing the Mach-Zehnder sensor, through a 2 mm hole. The experimental 

procedure was the same as that for the disks with the embedded fiber. 

8.7 Theory 

8. 7.1 Two dimensional strains 

The stress field equations for a disk are given in (8.5), (8.6), and (8.7) (Smith and Liu, 

1953). 

TTA 
z(b$. - x<j>2) + ßz2(b2 (8.5) 
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The terms (\>{ and (j)2 are given by the following 
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The term A is a parameter that is dependant on the material elastic properties, E and v, and 

the radii of curvature of the two objects in contact, and is given in equation (8.8). 

A = 1 
(   i        2      ,        2*\ 1-v,    1-v, 
 +  

( x} + (l) {2R2j 
£, n ) (8.8) 

The friction factor, ß, is taken to be zero because there is no tangential load and the 

half contact width, b, is found using the load data and given by equation (8.9). 

b = 
2PA 

\l   Tih 
(8.9) 

The strain along the loading axis, ea, is given by equation (8.10).The assumption of 

plane stress conditions, Oyy=0, has been made due to the geometry of the disks and equation 

(8.10) reduces to equation (8.11). 

e    = —(a    - v(o    + o  )) zz jc\   zz \   xx yy>) (8.10) 

e    = —(a    - v(o  )) zz r-\   zz V   xx'j (8.11) 

Equation (8.11) is the theoretical strain on the surface of the disk given the 

geometrical conditions and the load. 

From theory, the transverse strain, e    is given by equation (8.12). 

1 
e     = —{a    - v(o     + o )\ yy       £\ yy v -» ^') (8.12) 

Again, a plane stress assumption is made given the disk geometry and (8.12) is 

reduced to (8.13). 
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e    = -—(o    + o\ yy £\ xx zzj (8.13) 

To summarize, if the load is known and the geometry of the two bodies in contact is 

given, the surface strain, equation (8.11), and the transverse strain, equation (8.13), can be 

calculated. 

If the fiber is far away from the diametrically opposite side, the effect of the load from 

the opposite side is relatively small and this has been shown in Figure 8.19. This plot shows 

the percent error in the calculation of transverse strain, e^, as a function of the normalized 

position of the sensor. 

8. 7.2 Stress in a sphere 

Johnson (1985) presents equations for the stresses along the z-axis in a sphere. These 

equations are 

o   - oc -(1+v)  l--tan"'- 
l      a        z 
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(8.14) 
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The terms in these expressions are given in the following equations. 
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e =±.{ox-v(oy+oz)) (8.20) 

The effect of superposition from the diametrically opposite load was neglected for the 

reasons stated above in the theoretical derivation for a disk under diametral compression 

8.8 Results and Discussion 

From the results, it is seen that the Mach-Zehnder fiber optic sensor can be embedded 

in bodies and used to record strains. Fig. 8.25 and 8.26 are theoretical plots of expected strain 

values and expected number of fringes for varying loads and varying the position of the 

embedded sensor on the z-axis. Figure 8.27 and 8.28 show a comparison of the experimental 

and theoretically obtained strain values for the disk experiments. Figure 8.29 shows the 

typical outputs of the fiber optic sensor and the piezoelectric load cell. Figure 8.30 is a plot 

of the experimental and theoretical half contact width vs. the contact load. A consistent 

deviation in the slope of the theoretical and experimental plot was observed in all the 

experiments using the Mach-Zehnder embedded in disks. A number of reasons for these errors 

were explored and are listed below: 

• improper measurement of the gage length of the fiber Due to the nature of 

embedding, the measured value of embedded length of fiber, or in other words 

the gage length, might not be accurate because the effective load carrying 

length of the fiber is dependent upon the embedding technique 

• the equations used to compute the strain were based on infinite elastic half 

spaces with a Hertz contact area. An attempt to include the effect of the force 

being applied at the diametrically opposite side was made based on the work 

223 



in Johnson (1985). A concentrated force was assumed for the opposite side 

and the superposition principle was applied. The theoretical plot of the 

expected error is shown in Figure 8.26. The superposition of the opposite 

force did not contribute significantly to the strain computations 

• the Mach-Zehnder sensor yields an average value of the strain over the 

embedded length but the theoretical equations are valid for a point on the 

body. The development of an integral expression for strain along the 

embedded length might produce more accurate results Another alternative 

would be to use a "point" sensor, such as a Fabry-Perot sensor, because of its 

ability to measure strain within a small gage length. 

• the presence of air bubbles in the filling compound might have altered the 

effective gage length. 

Figure 8.31 shows the data obtained from the Fabry-Perot sensor attached to a disk 

under diametral compression. Again, the theoretical line was obtained using load data from 

the load cell and applying Hertz contact theory to calculate the strain at the sensor location. 

The plot shows agreement with the theoretical prediction within 14% 

The figure eight sensor was used to measure the relative displacement between disk 

centers when the disks were subject to loading. Figure 8.32 shows the resulting plot of load 

versus displacement. The center to center displacement was chosen because of its value to 

numerical codes such as the Discrete Element Method. These codes make use of rigid bodies 

and Newtonian mechanics to predict particle overlap. This overlap is then used to develop 

contact force through particular stiffness and / or damping characteristics Typically the center 

to center displacement is what is tracked throughout the numerical simulation Additionally, 

the load / displacement behavior is often modeled as a power law relationship which is 

verified in Figure 8.32 by the figure eight sensor. 

Predicting stress and strain profiles in three dimensional bodies is an order of 

magnitude more complicated. For the three dimensional experiments, a sphere, which is the 

most simple representation of a 3d body, was used as the specimen and a fiber was embedded 

using the same process as for the disks To avoid numerical procedures, strains were 

computed for a point along the z-axis. 

As was the case in disks, a very significant deviation in slope was observed between 
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the theoretical and experimental values of strain. Once again, the experimentally obtained 

value of strain is the average value of strain along the embedded length where as the 

theoretically obtained values are for a point on the z-axis. In a sphere, the strain increases in 

magnitude from the free surface to a interior point on the z-axis (Johnson, 1985). Perhaps an 

arithmetic mean of the theoretical strain would afford better comparison with the 

experimentally obtained value of average strain along the embedded length. 

Figure 8.33 shows the characteristic fiber optic and load cell output for a sphere under 

compression. The theoretical equations are non linear and a slight amount of non linearity was 

observed in the strain vs. load plots as seen in Figure 8.34. 

8.9 Conclusion 

The Mach-Zehnder fiber-optic sensor measured axial strains with acceptable accuracy 

and these strain measurements have been shown to be linear up until the failure point of the 

sensor. This failure point, using the technique described in this paper, has been shown to be 

much lower, typically 1.2-1.8 percent strain, than that taken to be accepted maximums for 

attached resistance type strain gages, 3-6 percent strain Failure has been shown to be either 

due to fiber fracture or delamination and glue failure. For applications in our laboratory, this 

upper limit of measurement is above the strains encountered. Experiments were also 

conducted in which the entire fiber was covered with glue. Covering the fiber entirely with 

glue produced fiber fracture only. The glue showed cracking at the fiber fracture point and 

the failure strains were comparable with the values presented in this paper 

The Mach-Zehnder sensor can be embedded through bodies to measure strains. The 

strains predicted by the sensor are an average over the gage length and can only approximate 

the actual strain value at a unique point. The technique used to embed the fibers is critical for 

accurate prediction of strain values. The experiments using the 32 mm diameter disks proved 

that transverse strains due to Poisson's ratio effect can be approximately predicted by these 

sensors. Sub surface strains in spherical bodies under diametral compression can also be 

predicted by Mach-Zehnder fiber optic sensors However, the value of the strain predicted 

is an average strain over the embedded length of the sensor. This strain prediction is very 

large when compared to the theoretical strain at a point inside of the sphere. For comparison 

to the theory, a more suitable sensor would be the Fabry-Perot interferometric sensor. 
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Fabry-Perot sensors have been shown to be applicable for determining contact 

parameters. The sensor was within 14 percent agreement with the theoretical values. 

The mechanisms of failure described for the Mach-Zehnder sensor are speculated to 

be indicative of those for the Fabry-Perot sensor. However, preliminary work has shown that 

there is a dependance of the failure strain on both the diameter and the material properties of 

the glass tube used in constructing the Fabry-Perot. 

In the case of the figure of eight sensor, the sensor shows two distinctly linear regions 

with mean deviations from linearity of 1.2 and 0.02 percent. The maximum deviations from 

linearity in these regions was found to be 7.1 and 8.4 percent. One of the linear regions shows 

a sensitivity of 475 mV/mm over a 30 mm extension. The second region yields a broader 

range of 200 mm but a lower sensitivity, 8 mV/mm. When applied to the contact problem, the 

sensor verified the power law behavior assumption between load and displacement. 
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Figure 8.1. Schematic of the experimental setup for the Mach-Zehnder sensor. 
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Figure 8.2. Schematic of the Fabry-Perot sensor. 
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Figure 8.3. Schematic of the experimental setup for the Fabry-Perot sensor. 

Figure 8.4. Jig for construction of Fabry-Perot sensor. 
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Figure 8.7. Schematic of cantilever beam for calibration of the Mach-Zehnder sensor. 
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Figure 8 11. Typical output from the strain gage and the fiber optic sensor during tension 
testing. 
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Figure 8.20. Illustration of a cantilever beam with fiber sensor and 
strain gage mounted to opposite sides. 
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